Questo file NON esaurisce il programma d'esame: si tratta solo di una proposta di ripasso in preparazione all'esame, da affrontare dopo aver concluso lo studio dei seguenti argomenti:

Programma d'esame preso in considerazione.

• Derivate. Definizione di derivata tramite il limite del rapporto incrementale. Significato geometrico della derivata: la retta tangente. Derivata sinistra, destra. Ogni funzione derivabile è anche continua. La condizione è solo sufficiente e non necessaria. Esempi. Derivate delle funzioni elementari con la definizione. Punti angolosi, cuspidi, flessi a tangente verticale.

Regole di calcolo per le derivate: somma, prodotto, reciproco, quoziente. Derivata di una funzione composta. Funzioni inverse. Derivata di una funzione inversa. Le derivate delle funzioni "arcsin , "arccos", "arctan".

Ottimizzazione: massimo, minimo assoluti e relativi e punti di massimo, minimo assoluti e relativi. Teorema di Fermat. Discussione sull'essenzialità delle ipotesi. Teorema di Lagrange e teorema di Rolle. Discussione sull'essenzialità delle ipotesi. Test di monotonia. Caratterizzazione delle funzioni a derivata nulla su un intervallo.

Definizione di convessità e concavità per una funzione derivabile. Caratterizzazione della convessità e concavità tramite la monotonia della derivata prima. Convessità e concavità e derivata seconda. Punti di flesso.

Teorema di De l'Hôpital. Esempi, controesempi. Definizione di o-piccolo. Formula di Taylor con resto di Peano: enunciato ed esempi. Formula di Taylor con resto di Lagrange. La convergenza dello sviluppo in serie di MacLaurin della funzione esponenziale.

VERSO L'ESAME Derivate

Scrivi la definizione di funzione derivabile in un punto:
Se una funzione è derivabile in un punto, è continua in quel punto?
\square sì
\square no
Se una funzione è continua in un punto, è derivabile in quel punto?
\square sì
\square no
Una delle due affermazioni è vera e deve essere dimostrata, l'altra è falsa e lo si mostra con un controesempio. Dimostriamo quella vera.
Qual è l'ipotesi?

Qual è la tesi?
Scrivi la dimostrazione:
Fai un controesempio per quella falsa (cioè scrivi una funzione precisa)
Esistono tre tipi di punti di non derivabilità :
Descrivi il primo, rappresentalo e fai un esempio:

Descrivi il secondo, rappresentalo e fai un esempio:
Descrivi il terzo, rappresentalo e fai un esempio:
Siano $f,g:\mathbb{R}\to\mathbb{R}$ derivabili in \mathbb{R} . Qual è la regola per calcolare la derivata del loro prodotto?
Dimostra la regola, usando solo l'ipotesi di derivabilità per le due funzioni e precisando ogni passaggio (attenzione a quello finale):

Qual è la regola per calcolare la derivata del loro quoziente?
Qual è la regola per calcolare la derivata della funzione composta di f e g ?
Scrivi la definizione di massimo locale
SCHVI la definizione di massimo locare
Scrivi la definizione di punto stazionario
Teorema di Fermat. Sia $f:[a,b] \to \mathbb{R}$ derivabile in un punto $x \in (a,b)$. Se x è un punto di estremo locale allora è un punto stazionario.
Quali sono le ipotesi?

Qual è la tesi?			
Dimostrazione. Suppo $(x-\delta,x+\delta)\subset(a,b)$ e che p			Allora esiste un $\delta > 0$ tale ch
Calcola la derivata sini	stra in x e stabilisci il suo	o segno:	
Calcola la derivata dest	ra in x e stabilisci il suo	segno:	
Concludi			
Se una funzione ha deriva	ata nulla in un punto, il p	ounto è un estremo loca	ale?
□ sì			
□ no			

Teorema di Lagrange. Sia f derivabile in (a,b) e continua in [a,b]. Allora esiste $c \in (a,b)$ tale che

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Dimostrazione. La dimostrazione studia la funzione

$$g(x) = f(x) - \left(f(a) + \frac{f(b) - f(a)}{b - a}(x - a)\right)$$

$g(x) = f(x) - \left(f(a) + \frac{b-a}{b-a}(x-a)\right),$
differenza tra la funzione e la retta che congiunge gli estremi.
Cosa puoi dire di g ? Completa la dimostrazione.
Il segno della derivata prima ci permette di studiare la monotonia della funzione. Scrivi l'enunciato del tes di monotonia.
Scrivi la definizione di funzione convessa in un intervallo, con f derivabile nell'intervallo:

Scrivi l'enunciato del teorema che lega convessità e derivata prima:
Scrivi l'enunciato del teorema che lega convessità e derivata seconda:
C: 1- 1-C.:: 1: 0
Scrivi la definizione di punto di flesso.
Se si ha che $f''(x_0) = 0$, x_0 è un punto di flesso?
\square sì
\square no
Se x_0 è un punto di flesso e $f''(x_0)$ esiste, si ha che $f''(x_0) = 0$?
\square sì
\square no
Scrivi l'enunciato del teorema di Taylor con resto di Peano:
· · · · · · · · · · · · · · · · · · ·

Scrivi l'enunciato del teorema di Taylor con resto di Lagrange:

Esercizio 2. Si consideri la funzione

$$f(x) = x \log x$$
.

- 1. Disegnare il grafico di f.
- 2. Determinare i polinomi di Taylor P_1 , P_2 e P_3 di f centrati in $x_0 = 1$ di grado 1, 2 e 3.
- 3. Scrivere la formula di Taylor di ordine 1, 2 e 3 centrata in x_0 con resto di Peano e per ognuna delle tre formule verificare esplicitamente la validità del teorema sull'ordine di annullamento del resto.
- 4. Disegnare i grafici di P_1 , P_2 e P_3 sullo stesso piano cartesiano del grafico di f.
- 5. Scrivere la formula di Taylor di ordine 3 centrata in x_0 con resto di Lagrange.

Quiz. Scegliere la risposta corretta.

1. L'equazione della retta tangente al grafico di $f(x) = \frac{2e^x}{x^2 + 3}$ nel punto di ascissa $x_0 = 1$ è

Risposta 1

A)
$$y = \frac{e}{4}(x-1)$$

B)
$$y = \frac{e}{4}x + \frac{e}{4}$$

C)
$$y = \frac{e}{4}x$$

D)
$$y = \frac{4e}{9}x + \frac{2e}{9}$$

2. Sia
$$f(x) = [\log(x^2 - 2)]^2$$
. Allora $f'(x) =$

Risposta 2

$$A) \frac{4x\log(x^2-2)}{x^2-2}$$

$$B) \ \frac{4x}{x^2-2}$$

$$C) 4x \log (x^2 - 2)$$

$$D) \ \frac{12x^3 \left[\log(x^4+2)\right]^2}{x^4+2}$$

3. Calcolare $\frac{d}{dx}(\arctan(\log x))$

Risposta 3

$$A) \ \frac{1}{1 + \log^2 x}$$

B)
$$\frac{1}{(\log x)(1+x^2)}$$

$$C) \frac{1}{(1+\log(x^2))x}$$

$$D) \ \frac{1}{\left(1 + \log^2 x\right) x}$$

4. Calcolare la derivata della funzione $x^2e^x \log x$.

Risposta 4

- $A) 2e^x$.
- $B) \ 2xe^x \log x + x.$
- C) $2xe^x \log x + x^2e^x \log x + xe^x$.
- D) $2x + e^x + \frac{1}{x}$.
- 5. Sia $f(x) = x \sin(2x)$. Allora

Risposta 5

- $A) f''(x) = 2\cos(2x) x\sin(2x)$
- B) $f''(x) = 4\cos(2x) 4x\sin(2x)$
- C) $f''(x) = x \sin(2x) 2\cos(2x)$
- D) $f''(x) = 4\cos(2x) + 4x\sin(2x)$
- 6. Sia $f:(a,b)\to\mathbb{R}$ e sia $x_0\in(a,b)$ un punto di cuspide per f. Se $\lim_{h\to 0^+}\frac{f(x_0+h)-f(x_0)}{h}=+\infty$ allora

Risposta 6

- A) $\lim_{h \to 0^-} \frac{f(x_0 + h) f(x_0)}{h} = -\infty$
- B) $\lim_{h \to 0^-} \frac{f(x_0+h) f(x_0)}{h} = +\infty$
- C) $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = +\infty$
- D) nessuna delle altre risposte
- 7. Quale delle seguenti affermazioni è corretta?

Risposta 7

- A) Se f è continua in (a,b) allora è derivabile in (a,b).
- $B) \ Se \ f \ \grave{e} \ monotona \ in \ [a,b] \ allora \ \grave{e} \ continua \ in \ [a,b] \ .$
- C) Se f è continua in [a,b] allora è monotona in [a,b].
- D) Se f è derivabile in (a,b) allora è continua in (a,b).
- 8. Supponiamo che la funzione composta $g \circ f$ sia definita nell'intervallo (a, b), che f sia derivabile in $x \in (a, b)$ e che g sia derivabile in f(x). Allora

Risposta 8

A) $g \circ f \ e$ derivabile in $x \ e \ (g \circ f)'(x) = g'(f(x)) f'(x)$.

C) $g \circ f \ e$ derivabile in $x \ e \ (g \circ f)'(x) = g'(f(x))$.

D) $g \circ f$ può non essere derivabile in x.

9. Sia f definita in (a,b). Si dice che f è derivabile in $c \in (a,b)$ se

Risposta 9

A) esiste finito $\lim_{x\to 0} \frac{f(x) - f(c)}{x - c}$.

B) esiste finito $\lim_{x\to c} \frac{f(x) - f(c)}{x - c}$.

C) esiste finito $\lim_{h\to c} \frac{f(c+h) - f(c)}{h}$.

D) esiste finito $\lim_{x\to c} \frac{f(x) - f(c)}{x + c}$.

10. Sia f derivabile in x con $f'(x) \neq 0$ e sia l'inversa f^{-1} derivabile in y = f(x). Allora

Risposta 10

A) $(f^{-1})'(y) = \frac{1}{f'(y)}$.

B) $(f^{-1})'(y) = -f'(x)$.

C) $(f^{-1})'(y) = \frac{1}{f'(x)}$.

 $D)\ \left(f^{-1}\right) ^{\prime }\left(y\right) =-\frac{1}{f^{\prime }\left(x\right) }.$

11. Supponiamo che la funzione f sia continua nel punto x_0 e che $f'_+(x_0) = 0$ e $f'_-(x_0) = 1$. Allora x_0 è

Risposta 11

A) un punto angoloso.

B) un punto di discontinuità di tipo salto.

C) un punto di cuspide.

 $D)\ un\ punto\ di\ flesso\ a\ tangente\ verticale.$

12. Sia $f(x) = \log(3x + 2)$. Il rapporto incrementale per la funzione f nel punto $x_0 = 2$ è la quantità

Risposta 12

A) $[\log(8+h) - \log(8)]/h$

B) $[\log(8) + h - \log(8)]/h$

C) $[\log(8+3h) + \log(8)]/h$

D) $[\log(8+3h) - \log(8)]/h$

13. Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile tale che f'(2) = 1. Se $g(x) = f(\sqrt{x})$, allora g'(4) = 1

Risposta 13

- A) 1/4
- B) 1/2
- C) 1
- D) non è possibile stabilirlo

14. La funzione $f(x) = xe^{3x}$ è convessa nell'intervallo

Risposta 14

- $A) \mathbb{R}$
- B) $\left(-\frac{2}{3},\infty\right)$
- C) $(0,+\infty)$
- D) non è convessa in alcun intervallo

15. Siano $f, g:(a, b) \to \mathbb{R}$ due funzioni derivabili e infinitesime per $x \to a^+$. Siano inoltre $g(x) \neq 0$ e $g'(x) \neq 0$ in (a, b). Per il teorema di de l'Hôpital,

Risposta 15

- A) se esiste $\lim_{x\to a^+} \frac{f(x)}{g(x)}$ allora esiste $\lim_{x\to a^+} \frac{f'(x)}{g'(x)}$ ed i limiti sono uguali
- B) esiste $\lim_{x\to a^+} \frac{f'(x)}{g'(x)}$ ed è uguale a $\lim_{x\to a^+} \frac{f(x)}{g(x)}$
- C) se esiste $\lim_{x\to a^+} \frac{f'(x)}{g'(x)}$ allora esiste $\lim_{x\to a^+} \frac{f(x)}{g(x)}$ ed i limiti sono uguali
- D) nessuna delle altre risposte

16. Sia $f:[a,b]\to\mathbb{R}$ derivabile su [a,b] e sia $x_0\in[a,b]$.

Risposta 16

- A) Se $f'(x_0) = 0$ allora x_0 è un punto di massimo o di minimo
- B) Se x_0 è un punto di massimo o minimo allora $f'(x_0) = 0$
- C) Se $x_0 \in (a,b)$ e x_0 è un punto di massimo o minimo allora $f'(x_0) = 0$
- D) nessuna delle altre risposte

17. Sia $f:[a,b] \to \mathbb{R}$ continua su [a,b]. Quale altra ipotesi è richiesta dal teorema di Lagrange?

Risposta 17

- A) che f sia derivabile in (a,b)
- $B)\ che\ f\ sia\ derivabile\ in\ [a,b]$
- C) che f sia derivabile in $c \in [a, b]$
- D) che f sia derivabile in $c \in (a,b)$

18. Sia $f:[a,b] \to \mathbb{R}$ continua. Per il teorema di Weierstrass

Risposta 18

- A) f ammette un punto di massimo oppure un punto di minimo
- B) f ammette un punto di massimo ed un punto di minimo.
- C) Se f(a) > 0 e f(b) > 0 allora f non si annulla mai
- D) Se f(a) f(b) > 0 allora esiste $c \in (a, b)$ tale che f(c) = 0
- 19. Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile nel suo dominio. Per il teorema di Lagrange, se f(-1) = -1 e f(1) = 1 allora

Risposta 19

- A) esiste $c \in (-1,1)$ tale che f'(c) = 1
- B) esiste $c \in (-1,1)$ tale che f'(c) = 2
- C) esiste $c \in (-1,1)$ tale che f'(c) = 0
- D) nessuna delle altre risposte
- 20. Applicando il teorema di Lagrange alla funzione

$$f(x) = 3x^4 - x^3 - 2x^2 + x + 1$$

sull'intervallo [0, 2] è possibile concludere che

Risposta 20

- A) Esiste $c \in (0,2)$ tale che f(c) = 10.
- B) Per ogni $c \in (0,2)$ si ha f'(c) = 17.
- C) Esiste $c \in (0,2)$ tale che f'(c) = 17.
- D) Per ogni $c \in (0,2)$ si ha f(c) = 10.
- 21. Sia $f:(a,b)\to\mathbb{R}$ derivabile; f è detta concava nell'intervallo (a,b) se:

Risposta 21

- A) $\forall x \in (a, b)$ si ha $f''(x) \leq 0$
- B) $\forall x_0 \in (a,b) \; \exists x \; tale \; che \; f(x) \leq f(x_0) + f'(x_0)(x-x_0)$
- C) $\forall x, x_0 \in (a, b) \text{ si ha } f(x) \ge f(x_0) + f'(x_0)(x x_0)$
- D) $\forall x, x_0 \in (a, b) \text{ si ha } f(x) \leq f(x_0) + f'(x_0)(x x_0)$
- 22. Sia $f:(a,b)\to\mathbb{R}$ derivabile e strettamente crescente. Allora

Risposta 22

- A) $\forall x \in (a, b)$ si ha $f'(x) \ge 0$
- B) $\forall x \in (a,b) \text{ si ha } f'(x) > 0$
- $C) \ f \ \grave{e} \ invertibile \ e \ la \ sua \ inversa \ \grave{e} \ derivabile$
- D) f è convessa
- 23. Il polinomio di Taylor di secondo grado della funzione $f(x) = x(\sqrt{x} + 1)$ con centro $x_0 = 1$ è

12

Risposta 23

- A) $2 + \frac{5}{2}(x-1) + \frac{3}{4}(x-1)^2$
- B) $2 + \frac{5}{2}(x-1) + \frac{3}{8}(x-1)^2$
- C) $2 + \frac{5}{2}x + \frac{3}{8}x^2$
- D) $16 + 5(x-4) + \frac{3}{16}(x-4)^2$
- 24. Sia $f(x) = 1 \frac{\sqrt{x-1}}{x}$ e sia $x_0 = 2$. Lo sviluppo di Taylor al secondo ordine con resto di Peano di f e centro in x_0 per $x \to 2$ è

Risposta 24

- A) $\frac{1}{2} + \frac{1}{16} (x-2)^2 + o((x-2)^2)$
- B) $\frac{1}{2} + (x-2) + \frac{1}{16}(x-2)^2 + o((x-2)^2)$
- C) $\frac{1}{2} + \frac{1}{16} (x-2)^2 + o((x-2)^3)$
- D) $\frac{1}{2} \frac{1}{16} (x-2)^2 + o((x-2)^2)$
- 25. Calcolare il seguente limite $\lim_{x\to 0} \frac{x-\sin x}{x^3}$

Risposta 25

- $A) \frac{1}{6}$.
- $B) -\frac{1}{6}$.
- C) 0.
- $D) +\infty.$
- 26. Calcolare il seguente limite $\lim_{x\to 0} \frac{-(1+2x)^{1/2}+1+x}{x^2}$

Risposta 26

- $A) -\frac{1}{2}$.
- $B) \frac{1}{2}$.
- C) 0.
- $D) +\infty.$

(Soluzioni: B A D C B - A D A B C - A D A B C - C A B A C - D A B A A - B)

Esercizi dagli esami

1.(Gennaio 2022) Sia data la funzione

$$f(x) = \operatorname{arctg}\left(\frac{x-1}{x-2}\right).$$

Fornire uno studio completo della funzione, in particolare studiare l'insieme di definizione, il segno della funzione, eventuali simmetrie, i limiti al bordo del dominio, i punti di discontinuità, eventuali asintoti, monotonia, punti di massimo e di minimo sia locali che globali, convessità e flessi. Inoltre

13

- a. disegnare un grafico probabile della funzione in base alle informazioni ottenute.
- b. scrivere la formula di Taylor all'ordine n=2 con resto secondo Peano centrata in $x_0=1$.
- 2.(Settembre 2021) Sia data la funzione

$$f(x) = e^{\left(\frac{1}{4-x^2}\right)}.$$

Fornire uno studio della funzione, in particolare studiare l'insieme di definizione, il segno della funzione, eventuali simmetrie, i limiti al bordo del dominio, i punti di discontinuità e eventuali asintoti, monotonia, punti di massimo e di minimo sia locali che globali. Non è richiesto lo studio della concavità, convessità ed eventuali punti di flesso. Disegnare quindi un grafico approssimativo della funzione in base alle informazioni ottenute.

3.(Luglio 2021) Stabilire per quali valori dei parametri reali a e b la seguente funzione è continua e derivabile in x = 0:

$$f_{a,b}(x) = \begin{cases} \frac{e^{ax^2} - 1}{x^2} & x < 0\\ a & x = 0\\ \frac{\log(1 + bx^2)}{x} & x > 0 \end{cases}$$

4.(Luglio 2021) Sia data la funzione

$$f(x) = \frac{x}{\sqrt{x-2}}.$$

Fornire uno studio completo della funzione, in particolare studiare l'insieme di definizione, il segno della funzione, eventuali simmetrie, i limiti al bordo del dominio, eventuali asintoti, monotonia, punti di massimo e di minimo sia locali che globali, concavità e convessità. Disegnare quindi un grafico approssimativo della funzione in base alle informazioni ottenute.

5.(Giugno 2021) Sia data la funzione

$$f(x) = \sqrt[3]{\frac{x+1}{x-2}}.$$

Fornire uno studio completo della funzione, in particolare studiare l'insieme di definizione, il segno della funzione, eventuali simmetrie, i limiti al bordo del dominio, eventuali asintoti, monotonia, punti di massimo e di minimo sia locali che globali. Non è richiesto lo studio della concavità convessità. Determinare e classificare in particolare gli eventuali punti di non derivabilità. Disegnare quindi un grafico approssimativo della funzione in base alle informazioni ottenute.

14

6.(Giugno 2021) Calcolare la derivata di

•
$$f(x) = \operatorname{arctg}\left(\frac{2x}{1-x^2}\right)$$

•
$$f(x) = \log\left(1 + \sqrt{x^2 + 1}\right)$$

$$f(x) = \sqrt{\frac{x+2}{3x^2}}$$