
Text Mining and Sentiment Analysis

Prof. Annamaria Bianchi
A.Y. 2024/2025

Lecture 12

25 March 2025

Using Bigrams to provide context in SA

SA with negators, amplifiers and deamplifiers

Packages: tidytext, tidyverse, udpipe

Functions: udpipe::udpipe(), udpipe::txt_sentiment()

Outline

2

By performing SA on the bigrams data, we can examine how often sentiment-associated words are preceded
by «not» or other negating words.

Let us use the AFINN lexicon for SA and examine the most frequent words preceded by «not» and associated
with a sentiment

> not_words = bigrams_separated |>
+ filter(word1 == "not") |>
+ inner_join(afinn, by =c("word2" = "word")) |>
+ count(word2, value, sort = T)

Using Bigrams to provide context in SA

3

It’s worth asking which words contributed the most to the «wrong direction». To compute that, we shall
multiply their score by the number of times they appear and visualize the results with a bar plot

> not_words |>
+ mutate(contribution = n*value) |>
+ slice_max(order_by = abs(contribution), n = 20) |>
+ mutate(word2 = reorder(word2, contribution)) |>
+ ggplot(aes(word2, contribution), fill = contribution>0) +
+ geom_col()+
+ coord_flip()

Using Bigrams to provide context in SA

4

Using Bigrams to provide context in SA

5

An R package which is an Rcpp wrapper around the UDPipe C++ library

udpipe allows to easily perform a number of important steps in NLP:

(1) Tokenization,

(2) Parts of Speech tagging,

(3) Lemmatization and

(4) Dependency Parsing.

Further, it also allows you to train your own annotator models directly from R and to perform sentiment
analysis using negators and amplifiers.

> install.packages("udpipe")

> library(udpipe)

Package udpipe

6

Currently the package allows you to do tokenisation, tagging, lemmatization and dependency parsing with
one convenient function called udpipe

udpipe(x, object, ...)

x either a character vector or a data.frame (with columns doc_id and text) or a list of tokens. All text data
should be in UTF-8 encoding

object either an object of class udpipe_model, the path to the file on disk containing the udpipe
model or the language as defined by udpipe_download_model. If the language is provided, it will
download the model using udpipe_download_model.

The function returns a data.frame with one row per doc_id and term_id containing all the tokens in the
data, the lemma, the part of speech tags, the morphological features and the dependency relationship along
the tokens.

udpipe function

7

The output data.frame has the following fields:

� doc_id: The document identifier

� paragraph_id: The paragraph identifier which is unique within each document.

� sentence_id: The sentence identifier which is unique within each document.

� sentence: The text of the sentence of the sentence_id.

� start: Integer index indicating in the original text where the token starts.

� end: Integer index indicating in the original text where the token ends.

� term_id: A row identifier which is unique within the doc_id identifier.

� token_id: Token index, integer starting at 1 for each new sentence. May be a range for multiword tokens or
a decimal number for empty nodes.

� token: The token.

� ………

The columns paragraph_id, sentence_id, term_id, start, end are integers, the other fields are character
data in UTF-8 encoding.

udpipe function

8

The base::iconv function allows to set and convert the encoding scheme.

base::iconv(x =text_data, from = ‘’, to = ‘’)

x a character vector

from a character string describing the current encoding

to a character string describing the target encoding

Encoding

9

Let us set UTF-8 as encoding for comments in bos.airbnb data.

> bos.airbnb$comments = iconv(bos.airbnb$comments, to = "UTF-8")

Encoding

10

In order to save space, we create a new tibble, called data with the required columns names and we apply the
udpipe function.

The udpipe() function requires that the columns names are doc_id and text.

> data <- bos.airbnb |>
+ rename(doc_id = ID,
+ text = comments)

> output <- udpipe(data, "english-gum")
> View(output)

udpipe function

11

udpipe function

12

The function udpipe::txt_sentiment() identifies words which have a positive/negative meaning, with
the addition of some basic logic regarding occurrences of amplifiers/deamplifiers and negators in the
neighbourhood of the word which has a positive/negative meaning.

� If a negator is occurring in the neigbourhood, positive becomes negative or vice versa.

� If amplifiers/deamplifiers occur in the neigbourhood, these amplifier weight is added to the sentiment
polarity score.

The function works on a udpipe-tokenised dataset.

Sentiment analysis with negators and (de)amplifiers

13

udpipe::txt_sentiment() implements a dictionary-based sentiment analysis considering the following
elements:

� polarity_terms: a data frame with the term and the polarity;

� polarity negators: multiply the polarity of the term by -1;

� polarity amplifiers (or deamplifiers): multiply the polarity of the term by a weight (0.8 here);

� n_before and n_after: is the number of words before/after the terms where to search for amplifiers or
negators;

� constrain: normalize the score between -1 and 1.

Sentiment analysis with negators and (de)amplifiers

14

txt_sentiment(x, term = "lemma", polarity_terms, polarity_negators = character(),

polarity_amplifiers = character(), polarity_deamplifiers = character(),

amplifier_weight = 0.8, n_before = 4, n_after = 2, constrain = FALSE)

x a data.frame with the columns doc_id, paragraph_id, sentence_id, upos and the column as indicated
in term. This is exactly what udpipe returns.

term a character string with the name of a column of x where you want to apply to sentiment scoring upon

polarity_terms data.frame containing terms which have positive or negative meaning. This data frame
should contain the columns term and polarity where term is of type character and
polarity can either be 1 or-1.

polarity_negators a character vector of words which will invert the meaning of the polarity_terms
such that-1 becomes 1 and vice versa

polarity_amplifiers a character vector of words which amplify the polarity_terms

polarity_deamplifiers a character vector of words which deamplify the polarity_terms

amplifier_weight weight which is added to the polarity score if an amplifier occurs in the
neighbourhood

Sentiment analysis with negators and (de)amplifiers

15

n_before indicating how many words before the polarity_terms word one has to look to find
negators/amplifiers/deamplifiers to apply its logic

n_after integer integer indicating how many words after the polarity_terms word one has to look to
find negators/amplifiers/deamplifiers to apply its logic

constrain logical indicating to make sure the aggregated sentiment scores is between-1 and 1.

Output. A list containing

� data: the x data.frame with 2 columns added: polarity and sentiment_polarity.

The column polarity being just the polarity column of the polarity_terms dataset corresponding to the
polarity of the term you apply the sentiment scoring
The colummn sentiment_polarity is the value where the amplifier/de-amplifier/negator logic is applied
on.

� overall: a data.frame with one row per doc_id containing the columns doc_id, sentences, terms,
sentiment_polarity, terms_positive, terms_negative, terms_negation and terms_amplification providing
the aggregate sentiment_polarity score of the dataset x by doc_id as well as the terminology causing the
sentiment, the number of sentences and the number of non punctuation terms in the document.

Sentiment analysis with negators and (de)amplifiers

16

Let’s consider the following sentences with the same sentiment word “love” and a negator (not), an amplifier
“really” and a deamplifier “barely”.

> text = c("I love this car",
+ "I really love this car",
+ "I do not love this car",
+ "I really do not love this car",
+ "I barely love this car")

> udpipe_text <- udpipe(text, "english-gum")
> View(udpipe_text)

Simple examples

17

Exercise. The argument polarity_terms in the txt_sentiment() function should provide a data.frame
containing terms which have positive or negative meaning. This data frame should contain the columns term

and polarity where term is of type character and polarity can either be 1 or-1.

Starting from the lexicon bing in the package tidytext, built a proper data.frame to be used in the
txt_sentiment() function.

Simple examples

18

Let us perform a standard SA, without applying any logic regarding occurrences of amplifiers/deamplifiers
and negators

> scores <- txt_sentiment(x = udpipe_text,term = "token",
+ polarity_terms = bing_dict,
+ polarity_negators = NULL,
+ polarity_amplifiers = NULL,
+ amplifier_weight = 0.8,
+ n_before = 0,
+ n_after = 0,
+ constrain = F)

Simple examples

19

Let us explore the output:

> View(scores$data)
> View(scores$overall)
> text
[1] "I love this car" "I really love this car" "I do not love this car" "I really do
not love this car"
[5] "I barely love this car"
> scores$overall$sentiment_polarity
[1] 1 1 1 1 1

Simple examples

20

Let us now add negators:

> scores_not <- txt_sentiment(x = udpipe_text,term = "token",
+ polarity_terms = bing_dict,
+ polarity_negators = c("not","no"),
+ amplifier_weight = 0.8,
+ n_before = 1,
+ n_after = 0,
+ constrain = F)

> text
[1] "I love this car" "I really love this car" "I do not love this car" "I really do
not love this car"
[5] "I barely love this car"

> scores_not$overall$sentiment_polarity
[1] 1 1 -1 -1 1

Simple examples

21

>

Let us now add amplifiers and deamplifiers:

> scores_all <- txt_sentiment(x = udpipe_text,term = "token",
+ polarity_terms = bing_dict,
+ polarity_negators = c("not","no"),
+ polarity_amplifiers = c("very","really"),
+ polarity_deamplifiers = c("barely"),
+ amplifier_weight = 0.8,
+ n_before = 2,
+ n_after = 2,
+ constrain = F)

> text
[1] "I love this car" "I really love this car" "I do not love this car" "I really do
not love this car"
[5] "I barely love this car"
> scores_all$overall$sentiment_polarity
[1] 1.0 1.8 -1.0 -1.0 0.2

Simple examples

22

Let us now add amplifiers and deamplifiers:

> scores_all <- txt_sentiment(x = udpipe_text,term = "token",
+ polarity_terms = bing_dict,
+ polarity_negators = c("not","no"),
+ polarity_amplifiers = c("very","really"),
+ polarity_deamplifiers = c("barely"),
+ amplifier_weight = 0.8,
+ n_before = 2,
+ n_after = 2,
+ constrain = F)

> text
[1] "I love this car" "I really love this car" "I do not love this car" "I really do
not love this car"
[5] "I barely love this car"
> scores_all$overall$sentiment_polarity
[1] 1.0 1.8 -1.0 -1.0 0.2

Simple examples

23

Exercise. Explain how these values are
computed.

Let us now change the values of n_before and n_after:

> scores_all_3 <- txt_sentiment(x = udpipe_text,term = "token",
+ polarity_terms = bing_dict,
+ polarity_negators = c("not","no"),
+ polarity_amplifiers = c("very","really"),
+ polarity_deamplifiers = c("barely"),
+ amplifier_weight = 0.8,
+ n_before = 3,
+ n_after = 3,
+ constrain = F)

> text
[1] "I love this car" "I really love this car" "I do not love this car" "I really do
not love this car"
[5] "I barely love this car"
> scores_all_3$overall$sentiment_polarity
[1] 1.0 1.8 -1.0 -0.2 0.2

Simple examples

24

The following exercises refer to the case study based on Boston Airbnb comments.

Exercise 1

Consider Boston Airbnb reviews tokenized into bigrams.
1) Remove stopwords from bigrams. Hint: In order to remove stopwords, it is convenient to consider bigrams

separated into two variables.
2) Which are the most common bigrams, after removing stopwords?
3) Which type of station is most commonly mentioned in the reviews?

Exercise 2

1) Tokenize Boston Airbnb reviews into trigrams.
2) Remove stopwords from trigrams.
3) Which are the most common trigrams? Does this information provide some insights?

Exercise for you

25

