SCHEDA 6 – EQUILIBRI IN SOLUZIONE ACQUOSA

Nei sistemi in soluzione acquosa occorre tener conto dell'equilibrio di autodissociazione dell'acqua stessa:

$$H_2O_{(liq)} = H^+_{(aq)} + OH^-_{(aq)}$$

la cui K di equilibrio, considerando costante $[H_2O]$ e inglobandola nella costante stessa, vale $K_w = 10^{-14}$.

Si definisce **pH** la grandezza (- log [H⁺]) e analogamente pOH (- log [OH⁻]). [H⁺]x[OH⁻] = 10^{-14} e **pH** + **pOH** = **14**.

Si definisce **acido** secondo Br\u00e0nsted una sostanza in grado di cedere ioni H⁺ a una base, e **base** una sostanza in grado di accettare ioni H⁺ da un acido. Cedendo H⁺ un acido si trasforma nella propria **base coniugata** mentre acquistando H⁺ una base si trasforma nel proprio **acido coniugato**. La forza di un acido e della sua base coniugata sono inversamente proporzionali ($K_a \times K_b = 10^{-14}$).

Un acido forte sciolto in acqua si dissocia completamente e quindi la sua concentrazione equivale a $[H^+]$. Nel caso di un acido debole, invece, occorre tener conto che la dissociazione è incompleta. Se l'acido è abbastanza debole e abbastanza concentrato è possibile approssimare $[H^+]$ a $\sqrt{\text{(Conc. iniz.)}}$ x K_a , altrimenti occorre sviluppare un'equazione di secondo grado basata sulla definizione di K_a . Per le basi è lo stesso.

E' detta **soluzione tampone** una soluzione contenente quantità simili di un acido debole e della sua base coniugata; questa soluzione mantiene il pH quasi invariato per aggiunta di piccole quantità di acido o base forte. Il pH di una soluzione tampone contenente l'acido AH e la base coniugata A⁻ è dato da:

$$pH = pK_a + log \frac{[A^-]}{[AH]}$$

Quando un composto ionico AB viene sciolto in acqua, esso si dissocia completamente nei suoi ioni A⁺ e B⁻, i quali, se sono coniugati di base o acido debole, possono dar luogo alle reazioni di **idrolisi**:

$$A^{+} + H_{2}O = AOH + H^{+}$$

 $B^{-} + H_{2}O = BH + OH^{-}$

Le costanti K_a e K_b sono reperibili sulla tabella; avviene di preferenza a reazione con la K maggiore, e determina se il pH finale sarà acido o basico. Gli ioni coniugati di acidi o basi forti non danno luogo a idrolisi (ioni spettatori) e quindi non alterano il pH.

Quando un composto ionico $A_m B_n$ è poco solubile, la massima concentrazione dei suoi ioni in soluzione è determinata dal **prodotto di solubilità** $K_{PS} = [A^+]^m [B^-]^n$. Se il prodotto degli ioni in soluzione supera questo valore, si osserva precipitazione.

PROBLEMI

Una data sostanza, a 20°C e 1 atm, è gassosa e ha densità 1,515 g dm⁻³; 1 cm³ di questo gas si scioglie in un litro d'acqua con reazione esotermica formando una soluzione a pH 4,4. Di che sostanza si tratta?

Scrivere la reazione di dissociazione acida di HNO₂ (acido nitroso) in acqua. Se a questa soluzione viene aggiunta una piccola quantità di HNO₃ (acido nitrico), l'equilibrio di dissociazione di HNO₂ si sposterà? Se sì, come? Se no, perché ?

Quanti mL di una soluzione acquosa a pH 12,4 si devono aggiungere a 10 L di una soluzione a pH 5,2 per portarla a pH 7?

[R. 2,5 mL]

A 50 L di una soluzione a pH 5,8 vengono aggiunti 10 mL di un'altra soluzione a pH 12,1. Calcolare il pH risultante.

[R.7,97]

Una vasca di 2 m x 3 m, profonda 50 cm, è piena di una soluzione acquosa a pH 3,4. Quanti grammi di Ca(OH)₂ occorre aggiungere per portarla a pH 7 ?

[R. 44,3 g]

Tre barattoli contengono tutti polvere bianca, ma le etichette si sono staccate. Sulle tre etichette c'è scritto: KCI, $C_{10}H_{10}$ e $CaCO_3$. Suggerire dei metodi sperimentali per attribuire la giusta etichetta a ciascun barattolo.

Calcolare il pH di una soluzione acquosa 10⁻² M di acido ipocloroso (HClO).

[R. 4,76]

Calcolare il pH di una soluzione acquosa 0,02 M di KCN.

[R. 10,7]

Calcolare il pH di una soluzione ottenuta aggiungendo 10 g di acetato di sodio a 200 mL di una soluzione 1 M di acido acetico.

[R. pH = 4,56]

 $BaSO_4$ è un composto ionico poco solubile: K_s = 10^{-10} . Data una soluzione acquosa satura di $BaSO_4$ in presenza di solido non disciolto, dire che cosa succede a) aggiungendo $BaCl_2$ b) aggiungendo HCl c) aggiungendo acqua. Spiegare brevemente.

A 50 L di una soluzione acquosa satura di AgCl vengono aggiunti 10 mL di una soluzione acquosa 0,1 M di KCN. Si ha precipitazione di cianuro d'argento?

[R. sì]

A 10 L di una soluzione acquosa a pH 6 viene aggiunto 1 mL di una soluzione 0,1 M di ioni Cr^{3+} . Si osserverà precipitazione di $Cr(OH)_3$?

[R. sì]

Il composto ionico Na_3PO_4 (fosfato di sodio) viene sciolto in acqua. Dire se il pH della soluzione risultante sarà acido, neutro o basico, scrivendo anche l'eventuale reazione di idrolisi che avviene.

[R. basico]

Calcolare quanti g di Cu₂S si sciolgono, al massimo, in 1 m³ d'acqua contenente 10 ppm in massa di ioni S⁻.

[R. $3.9 \times 10^{-18} \text{ g / m}^3$]

Il composto ionico NH₄NO₃ (nitrato d'ammonio) viene sciolto in acqua. Dire se il pH della soluzione risultante sarà acido, neutro o basico, scrivendo anche l'eventuale reazione di idrolisi che avviene.

[R. acido]

Quanti g di Mn(OH)₂ si possono sciogliere in 1 m³ di acqua a pH 9?

[R. 187 g]

Quale volume di acqua pura occorre per sciogliere completamente 1,5 mg di ZnS?

[R. $2,86 \times 10^7 \text{ L}$]

Il limite di legge per la concentrazione di ioni Cd^{2+} nelle acque potabili è di 5 μ g/L. Usando i dati reperibili sulle tabelle, stabilire se un'acqua di sorgente a pH 7,2 che attraversa strati di roccia contenenti sali solubili di Cd^{2+} , può essere considerata potabile.

[R. no]

Il sangue contiene un sistema tampone costituito da H_2CO_3 e HCO_3^- in cui il rapporto $[HCO_3^-]$ / $[H_2CO_3]$ è di 20:1. Ammettendo che questo sia l'unico tampone contenuto nel sangue calcolarne il pH.

[R. pH = 7,7]