

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

22059 – APPLIED TOPICS IN MANAGEMENT ENGINEERING

Excel, Access and Matlab

Prof. Giuseppe Pellegrini Prof. Renato Redondi

AGENDA

Lecture V

- FUNCTIONS TO GENERATE RANDOM NUMBERS
 - RAND
 - RANDBETWEEN
- MONTE CARLO SIMULATION
 - How to implement in Excel
 - Data Analysis
- FURTHER MATERIAL

di Ingegneria Gestionale. dell'Informazione e della Produzione

RAND (CASUALE)

- The RAND function generates a random decimal number between 0 and 1 evenly distributed.
- RAND recalculates when a worksheet is opened or changed.

RAND ()

- The function has not any argument.
- In order to generate a list of random numbers, you have to drag the formula down.
- If you want the calculated value not to change:
- 1. Copy the cell with random number (or list).
- 2. Paste it as values.

Now, the initial random number is a value, but in cell A1 the random number has changed.

Paste Options:

RANDBETWEEN (CASUALE.TRA)

• The RANDBETWEEN function generates a random whole number between two boundaries.

RANDBETWEEN (bottom,top)

- bottom: The lowest value allowed.
- top: The highest value allowed.

• To generate a decimal random number between two numbers, you have to modify the RAND function as follow:

RAND()*(b-a)+a

Ex. Random decimal number between 50 e 75 \rightarrow

Fig.4: Example of RAND with decimal numbers

MONTE CARLO SIMULATION

 Monte Carlo Simulation allows to model the probability of different outcomes in a process that cannot easily be predicted due to the intervention of random variables.

It is used to:

- Assessing the impact of risk, allowing for better decision making under uncertainty.
- Performing risk analysis by building models of possible results by substituting a probability distribution for any factor that has inherent uncertainty.
- This technique is used in several fields such as finance, project management, manufacturing, transportation etc.
- Monte Carlo Simulation does not provide a specific result, but a distribution of possible outcomes.

MONTE CARLO SIMULATION

How to implement in Excel

- First, you decide the type of distribution and the number of iterations.
- [In the following example, a normal distribution and 1000 iterations will be considered]

STEP 1

- Mean
- Standard deviation

INPUT VARIABLES:

	А	В
1		Case 1
2	Mean	100
3	Std_deviation	40
4	Iterations	1000

Fig.5: Initial data

• To calculate the "Value X" of a normal distribution with defined mean and standard deviation, you have to use:

STEP 2

NORM.INV(probability,mean, std_deviation) INV.NORM(probabilità; media; dev_standard)

- Probability → The function RAND() to elicit a random number based on the other criteria within the distribution.
- Mean \rightarrow The mean defined in STEP 1.
- Standard deviation \rightarrow The standard deviation defined in STEP 1.

Fig.6: How to calculate Value X

• Now, to automatically implement the Monte Carlo Simulation, you have to use a Data Table (for more details, see Lecture I):

Simulation				
1				
2				
3				
4	6			Casa 1
5	0		_	Case I
6	7	Value X		115,4804
0	8			
7	0	C!		-07
8	9	Simulation	-	-67
9	10		1	
10				
997				
998				
999				
1000				

Simulation	115,4804
1	
2	
3	
4	
5	
6	
7	1
8	
9	
10	
11	
12	
13	

Fig.7: Data Table preparation steps

STEP 3

After performing the primary steps, in order to run the Monte Carlo Simulation you have to select an empty cell in the box «column input cell» (see Figure 8).

1			C 1				
2	Mea	Tabell	a dati			?	\times
3	Std_devi	Cella d	i input per riga				1
4	Iterati	Cella u	i input per <u>r</u> iga	•			-
5		Cella d	i input per <u>c</u> olo	onna:	\$C\$9		Ť
6				OK		A	
7	Value			UK .		Ann	iulia
8							
0	Simulatio	n	115,4804	[
9			/	k — — — — —		1	

Fig.8: Empty cell selection

9	Simulation	115,4804
10	1	100,0503
11	2	198,6664
12	3	18,75203
13	4	45,35186
14	5	133,2154
15	6	112,0618
16	7	147,8382
17	8	67,1604
18	9	129,9201
19	10	116,8338

Fig.9: Monte Carlo Simulation

- Monte Carlo Simulation has been run.
- To perform a detailed analysis on the obtained distribution, you have to activate the "Data Analysis" Tab.
 - How? Click on File \rightarrow options
 - Select "Componenti aggiuntivi"
 - Click on "Vai..."
 - Select "Strumenti di analisi"
 - Click on OK

Data	Data Analysis
	Analysis
Fig.11: «Data	a Analysis» in Data Tab

?

Х

Componenti aggiuntivi

Componenti aggiuntivi disponibili:

Fig.10: «Strumenti di analisi» selection

MONTE CARLO SIMULATION

Data Analysis

- To generate a histogram of the Monte Carlo Simulation outcomes, you have to:
 - Click on Data Analysis Tab
 - A "Data Analysis" window will appear
 - Select "Histogram"

Fig.12: «Histogram» selection

- To generate a histogram of the Monte Carlo Simulation outcomes, you have to:
 - Insert "input range" (cells range with simulation outcomes).
 - Define "Output options"
 - Choose which output you want to get

Istogramma		? ×
Input Intervallo di <u>i</u> nput: I <u>n</u> tervallo della classe:	\$B\$11:\$B\$1011	OK Annulla
 Etichette Opzioni di output Intervallo di output: Nuovo foglio di lavoro: Nuova cartella di lavoro Pareto (istogramma ordinato) Percentuale cumulativa Grafico in output 		÷

Fig.13: Histogram input and output

12

• After a short period of time the histogram will appear:

Fig.14: Histogram with frequency and cumulated probability

13

- If you want to know in detail the characteristics of the results distribution you have to:
 - Click on Data Analysis Tab
 - A "Data Analysis" window will appear
 - Select "Statistica descrittiva"

Analisi dati		?	\times
<u>S</u> trumenti di analisi		C	Ж
Analisi varianza: ad un fattore Analisi varianza: a due fattori con replica Analisi varianza: a due fattori senza replica Correlazione Covarianza	^	Anr	ulla
Statistica descrittiva Smorzamento esponenziale Test F a due campioni per varianze Analisi di Fourier Istogramma	~		

Fig.15: «Descriptive statistics» selection

- To generate the Descriptive Statistics of the Monte Carlo Simulation outcomes, you have to:
 - Insert "input range" (cells range with simulation outcomes).
 - Define "Output options"
 - Choose which output you want to get

Statistica descrittiva	?	\times
Input Intervallo di input: Dati raggruppati per:	OK Annulla <u>?</u>	
Opzioni di output Intervallo di <u>o</u>utput: Nuovo <u>f</u>oglio di lavoro: 		
 Nuova cartella di lavoro Riepilogo statistiche Livello di confidenza per media: 95 % K-esimo più grande: 1 K-esimo più piccolo: 1 		

Fig.16: «Descriptive statistics» input and output

15

• After a short period of time, Descriptive Statistics will appear:

	А	В			
1	Colonna1				
2					
3	Media	98,57618941			
4	Errore standard	1,300445695			
5	Mediana	99,65623932			
6	Moda	#N/D			
7	Deviazione standard	41,12370371			
8	Varianza campionaria	1691,159006			
9	Curtosi	0,067007798			
10	Asimmetria	-0,096766768			
11	Intervallo	293,7885328			
12	Minimo	-75,99966514			
13	Massimo	217,7888677			
14	Somma	98576,18941			
15	Conteggio	1000			

Fig.17: «Descriptive statistics»

- Obviously, some parameters could have been calculated with excel formulas:
 - Average \rightarrow AVERAGE ()
 - Median \rightarrow MEDIAN ()
 - Maximum \rightarrow MAX ()
 - Minimum \rightarrow MIN ()
 - Sum \rightarrow SUM ()
 - Count \rightarrow COUNT ()
 - Standard Deviation \rightarrow STDEV ()

FURTHER MATERIAL

To review and deepen the topics of this lecture

- 1. <u>https://www.youtube.com/watch?v=HwVBi--mE4M</u>
- 2. Alexander, M., Kusleika, R., & Walkenbach, J. (2018). Excel 2019 Bible. John Wiley & Sons

di Ingegneria Gestionale. dell'Informazione e della Produzione