Kick-off: A review of basic concepts

Peter Cincinellf

University of Bergamo

Financial Instruments and Markets (6 CFU)
Academic Year 2022-2023
(Financial Investment and Corporate Finance - 12 CFU)

Aims of the lesson (Section 1)

- The time value of money;
- The future value of a cash flow today;
- Compounding;
- The present value of a cash flow in the future;
- Discounting.

All time worldwide box-office

Movie	Year	Box office revenue (USA dollars not adjusted for inflation)
1. Avatar	2009	$\$ 2,787,965,087$
2. Titanic	1997	$\$ 2,186,772,032$
3. Star Wars: The Force Awakens	2015	$\$ 2,040,854,468$
9. Frozen	2013	$\$ 1,276,480,335$
13. Lord of the Rings: Return of the King	2003	$\$ 1,119,929,521$
20. Jurassic Park	1993	$\$ 1,029,153,882$
58. Star Wars	1977	$\$ 775,400,00$
216. Gone with the wind	1939	$\$ 400,200,000$

Time value of money

- Supposed I asked you to lend me €100 today and promised to pay back €100 a year from now;
- Is that a good deal?
- What would make it a good deal?

Why time value of money?

- A euro today is worth more than a euro tomorrow;
- Why does money have time value?

...FUTURE VALUE...

Future value

- Future value of a cash flow today is the value of the funds invested at your opportunity cost;
- We call it: "r", i.e. interest rate;
- Let assume r=5\%;
- If you invest €100, today, at an interest rate of 5\%, how much will you have at the end of the year (one year)?
- If you invest €100, today, at an interest rate of 5\%, how much will you have at the end of three years?

Future value

- How do you find the future value?
- Well, in general the future value of cash flow is called an upper interest rate r;
- We call this COMPOUNDING.

...PRESENT VALUE?...

zaner

Present value

- The present value of a future cash flow is the amount of cash flow you would take today instead of the promised future cash flow;
- As an example: you will be paid €50,000 in two years. How much would you accept today if your opportunity cost is 5% ?
- We call this DISCOUNTING.

Present value

- In all these present value and future value calculations, the r, that we use, represents the discounts rate, interest rate, opportunity cost of capital and, I and you, we use these all interchangeably.

Aims of the lesson (Section 2)

- The future value of a stream of cash flows;
- The present value of a stream of cash flows;
- Annuity;
- The present or future value of an annuity.

Future value of a stream of cash flows

- Suppose you would like to have $€ 50,000$ in two years to start your new business idea. Impressed by your performance at work, you employer has just given you an annual bonus of $€ 42,000$ today. If you can invest at 5% per year, will you have enough at the end of two years to start your new business?

Uneven stream of cash flows

- Suppose over the next four years, you will receive the following cash flows: year $1=€ 3,000$; year $2=$ €2,000; year 3= €4,000; year 4= €1,000;
- How much will you have at the end of four years ($\mathrm{t}=4$), if the opportunity cost of funds is 5% ?

Even stream of cash flows

- What if the cash flows were all the same?
- Say €3,000 every year?

Annuities

- An annuity is a series of equal fixed payments for a specified number of periods;
- Examples of annuities: bond payments, car loan payments, mortgage payments when you have a fixed cash flows;
- Annuity Compound Factor (ACF) sums up the compounding factors for n payments at a constant interest rate r;
- In general: $\operatorname{ACF}(r, n)=\left[\frac{(1+r)^{n}-1}{r}\right]$

Sinking fund problem

- $\operatorname{ACF}(r, n)=\left[\frac{(1+r)^{n}-1}{r}\right]$;
- We can look for the \boldsymbol{C}, i.e., the fixed equal payment, to accumulate to a target value;

$$
\begin{gathered}
\text { Future value }=C * \operatorname{ACF}(r, n) ; \\
\text { Future value }=3,000 * \operatorname{ACF}(r=5 \%, n=4)
\end{gathered}
$$

Example: retirement problem

- Suppose you want to make sure you have $€ 1,000,000$ when you retire in 35 years. What even annual payments would you have to make to get to your goal if you can earn 6\% per year?

Present value of a stream of cash flows

- How about we find the present value of a stream of cash flows?
- Annuity Discount Factor (ADF) sums up the discounting factors for n payments at a constant interest rate r;
- In general: $A D F(r, n)=\left[\frac{1-\frac{1}{(1+r)^{n}}}{r}\right]$
- Suppose you will get $€ 2,000$ every year for four years. What is the present value of these cash flows if the opportunity cost of funds is 5% ?

Example: loan problem

- The purchase price of the car you would like to buy is $€ 37,150$. You want to take out a loan (100% financing) with a maturity of 60 months. The first loan payment will come in one month's time, and the interest rate is 4% per year, compounded monthly. What are the monthly car payments?
- The statement «the interest rate is 4% per year, compounded monthly» tells us what the interest rate is per compounding period is.

Aims of the lesson (Section 3)

- How do you find effective interest rate?
- How do you adjust for compounding periods?
- What is continuous compounding?

Annual Percentage Rate (APR)

vS

Effective Rates

- The interest rate, provided by the loan problem, was given as 4% per year, compounded monthly;
- This is not the effective interest rate;
- This is the stated interest rate (or sometimes called the Annual Percentage Rate (APR));
- How do we find the effective annual interest rate?
- Suppose the stated interest rate is 4% per year, compounded monthly: what is the effective annual rate?

Effective Interest Rate

- In general: $(1+r)=\left(1+\frac{x}{t}\right)^{t}$ where: $r=$ effective rate; $x=$ APR; $t=$ time;
- Let is calculate other effective rates: effective 2month rate; 3-month rate; 6-month rate; 18-month rate;
- What if $r=6 \%$ per year, compounded semi-annually?
- What about other effective rates: effective 6-month rate; effective three-month rate; effective 2 -year rate (or 24 -month rate); effective 15 -month rate?

Continuous Compounding

- What if instead of every month, interest rate is compounded every instant, say continuously?
- Starting from: $(1+r)=\left(1+\frac{x}{t}\right)^{t}$ where: $r=$ effective rate; $x=\mathrm{APR} ; t=$ time;
- Now, let set t very large and define $r_{c}=$ the effective rate continuously compounded;
- Therefore: $e^{x}=\left(1+r_{c}\right)$; where is defined as: $r_{c}=e^{x}-1$

Aims of the lesson (Section 4)

- How do value perpetuities?
- Growing annuities and perpetuities?

Perpetuity

- Perpetuity is a series of equal payments of a fixed amount for an infinite number of periods;
- How much would you pay for the opportunity to get paid $€ 1,000$ per year forever, if the interest rate is 10\% per year?
- In general, we have: $V_{0}=\frac{C}{r}$;
- What if C will grow at a certain growth for ever?
- In general, we have: $V_{0}=\frac{C}{r-g}$

Growing Annuity

- Let is think back to annuity;
- What if the fixed payments grow at a constant rate?
- As an example: suppose you estimated your salary will start at $€ 90,000$ and will grow at 5% per year for the next five years. What is the present value of your future salary if the interest rate is 8% per year?
- Some hints: the Annuity Discount Factor, which includes the growth rate, becomes: $\operatorname{ADF}(r, n, g)=\left[\frac{1-\frac{(1+g)^{n}}{(1+r)^{n}}}{r-g}\right]$;
- The Annuity Compound Factor, which includes the growth rate, becomes: $\operatorname{ACF}(r, n, g)=\left[\frac{(1+r)^{n}-(1+g)^{n}}{r-g}\right]$

