Lezione 16 – Derivate di ordine n, concavità e convessità

(Programma base)

16.1 Concavità/convessità di una funzione

In molti problemi è importante, oltre alle proprietà di monotonia, poter conoscere la concavità o convessità di una funzione.

Per esempio, si è visto che nel problema break even la concavità o convessità della funzione costo S(x) porta ad avere o meno una soluzione del problema. Ci si chiede come è possibile determinare in modo agevole la concavità/convessità di una generica funzione f(x)?

Definizione 16.1

Sia $f:(a,b) \to R$, se f è derivabile in (a,b) allora esiste la funzione derivata se $f':(a,b) \to R$ è derivabile allora f si dice derivabile due volte in (a,b) e la derivata di f' si dice **derivata seconda di f** o **derivata di ordine 2** che si indica così:

$$f'', D^2 f, \frac{d^2 f}{dx^2}, \frac{d^2 y}{dx^2}, y'', y_{xx}$$

In generale se sono definite e derivabili f e tutte le sue derivate fino a quella di ordine n-1 si dice **derivata di ordine** n **di** f in (a,b) la derivata di quella di ordine n-1 che si rappresenta così:

$$f^{(n)} D^n f, \frac{d^n f}{dx^n}, \frac{d^n y}{dx^n}, y^{(n)}$$

Esempi 16.1

1) $f(x) = 3x^2 + 2x - 1$, f'(x) = 6x + 2, f''(x) = 6, f'''(x) = f''''(x) = ... = 0, le derivate di ordine maggiore a 2 sono tutte nulle!

2) $f(x) = P_n(x)$ polinomio di ordine n, $f^{(n+1)}(x) = f^{(n+2)}(x) = ... = 0$.

3)
$$f(x) = \ln x$$
, $f'(x) = \frac{1}{x}$, $f''(x) = -\frac{1}{x^2}$, $f^{(3)}(x) = \frac{2}{x^3}$, $f^{(4)}(x) = -\frac{6}{x^4}$ tutte definite per $x > 0$.

4) $f(x) = e^x$, $f''(x) = e^x$, $f''(x) = e^x$ sono tutte uguali!

5)
$$f(x) = \operatorname{sen} x$$
, $f'(x) = \cos x$ $f''(x) = -\sin x$, $f^{(3)}(x) = -\cos x$, $f^{(4)}(x) = \sin x$, ...

6)
$$f(x) = \cos x \ f'(x) = -\sin x$$
, $f''(x) = -\cos x$, $f^{(3)}(x) = \sin x$, $f^{(4)}(x) = \cos x$, ...

Concavità/convessità e derivata seconda

Richiamiamo le Definizioni 4.1

f convessa se

$$\forall x_1, x_2 \in X, X \text{ convesso}, h \in [0,1]$$

$$f(hx_1 + (1-h)x_2) \leq hf(x_1) + (1-h)f(x_2)$$
f strettamente convessa se

$$\forall x_1, x_2 \in X \text{ con } x_1 \neq x_2, h \in [0,1]$$
$$f(hx_1 + (1-h)x_2) < hf(x_1) + (1-h)f(x_2)$$

f concava se

$$\forall x_1, x_2 \in X, X \text{ convesso, } h \in [0,1]$$

$$f(hx_1 + (1-h)x_2) \ge hf(x_1) + (1-h)f(x_2)$$

$$f \text{ strettamente concava se}$$

$$\forall x_1, x_2 \in X \text{ con } x_1 \ne x_2, h \in [0,1]$$

$$f(hx_1 + (1-h)x_2) > hf(x_1) + (1-h)f(x_2)$$

Il significato di tale definizione è comprensibile intuitivamente ma non può essere efficacemente applicata per una verifica della concavità/convessità di f.

A tal fine si introduce il seguente teorema che introduce condizioni necessarie e sufficienti per la concavità/convessità e condizioni sufficienti per la stretta concavità/convessità basate sul segno della derivata seconda.

Teorema 16.1

Sia $f:(a,b) \to R$, se f è derivabile due volte in (a,b)

- $f''(x) \ge 0 \le 0 \forall x \in (a,b) \Leftrightarrow f$ è convessa (concava)
- $f''(x) > 0 \ (< 0) \ \forall x \in (a,b) \Rightarrow f$ è strettamente convessa (strettamente concava)

Esempi 16.2

- 1) La funzione $f(x) = x^4$ è strettamente convessa quindi convessa e $f''(x) \ge 0 \ \forall x \in R$ ma non vale $f''(x) > 0 \ \forall x \in R$; infatti $f''(x) = 12x^2$ e f''(0) = 0 ma non strettamente positivo. Il dominio di f è R_0 .
- 2) La funzione $f(x) = \sqrt{x}$ è strettamente concava quindi concava e $f''(x) \le 0 \ \forall x \in R_0^+$, in questo caso vale $f''(x) < 0 \ \forall x \in R_0^+$; infatti

$$f'(x) = \frac{1}{2\sqrt{x}}, f''(x) = -\frac{1}{4x\sqrt{x}} < 0 \quad \forall x \in R_0^+.$$

3) La funzione $f(x) = \log_{0.5} x$ è strettamente convessa quindi convessa e $f''(x) \ge 0 \ \forall x \in R_0^+$, in questo caso vale $f''(x) > 0 \ \forall x \in R_0^+$; infatti

$$f'(x) = \frac{1}{x} \log_{0.5} e, f''(x) = -\frac{1}{x^2} \log_{0.5} e = \frac{1}{x^2} \log_2 e > 0 \quad \forall x \in R_0^+.$$

16.1 Concavità della funzione costo

Affinché la funzione costo $S(x) = f(x) + C_f$ abbia significato dal punto di vista economico, bisogna che $S(0) = C_f$, S sia strettamente crescente e concava, un'ipotesi ulteriore potrebbe essere S limitata. Utilizzando i concetti derivata prima e seconda diremo quindi che le ipotesi si traducono così: se S è derivabile due volte per $x \in (0, +\infty)$, S(x) è strettamente crescente e concava se e solo se S'(x) > 0 e $S''(x) \le 0$ per ogni $x \in (0, +\infty)$. Se aggiungiamo l'ipotesi di limitatezza, per la monotonia, dovrà esistere $L < +\infty$ tale che $\lim_{x \to \infty} f(x) = L$.

Alcune funzioni che verificano queste ipotesi sono:

$$S(x) = 1 - \frac{1}{x+1} + C_f$$

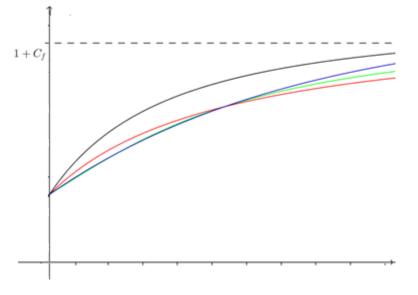
$$S(x) = 1 - \frac{\sqrt{x+1}}{(x+1)^2} + C_f$$

$$S(x) = 1 - \left(\frac{1}{2}\right)^x + C_f$$

$$S(x) = \frac{2}{\pi}\arctan(x) + C_f$$

Si può verificare che tutte soddisfano ai requisiti richiesti con lo stesso estremo superiore:

$$\lim_{x\to+\infty} S(x) = 1 + C_f.$$



Punti di flesso (Programma avanzato)

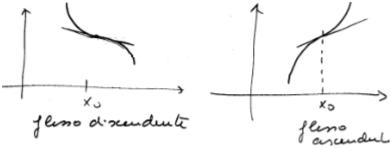
Definizione 16.2

Sia $f:(a,b)\to R$, se f è derivabile (a,b) un punto $x_0\in(a,b)$ si dice **punto di flesso** se

- $\exists I_{-}(x_0)$ tale che f(x) è strettam. convessa (concava) in $I_{-}(x_0)$ e
- $\exists I_+(x_0)$ tale che f(x)è strettam. concava (convessa) in $I_+(x_0)$

Se $f'(x_0) < 0$ il punto x_0 si dice di **flesso discendente.**

Se $f'(x_0) > 0$ il punto x_0 si dice di **flesso ascendente.**



Se $f'(x_0) = 0$ il punto x_0 si dice di **flesso a tangente orizzontale.**

Sia $f:(a,b)\to R$ è derivabile in $(a,b)\setminus\{x_0\}$, $x_0\in(a,b)$ si dice **punto di flesso a tangente verticale** se

- 1. $\lim_{x \to x_0} f'(x) = \lim_{x \to x_0} f'(x) = \pm \infty$
- 2. $\exists I_{-}(x_0)$ tale che f(x) è strettamente convessa (concava) in $I_{-}(x_0)$
- 3. $\exists I_+(x_0)$ tale che f(x) è strettamente concava (convessa) in $I_+(x_0)$

Teorema 16.2

Sia $f:(a,b) \to R$, se f è derivabile due volte in (a,b)

 $x_0 \in (a,b)$ punto di flesso per $f(x) \Rightarrow f''(x_0) = 0$ (condizione necessaria ma non sufficiente)

Calcolo di massimi e minimi locali

Teorema 16.3

Sia $f:(a,b) \to R$, se f è derivabile n volte in $x_0 \in (a,b)$ e

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0, f^{(n)}(x_0) \neq 0$$

Se n è pari il punto è di minimo locale qualora $f^{(n)}(x_0) > 0$ o di massimo locale qualora $f^{(n)}(x_0) < 0$. Se n è dispari il punto è di flesso a tangente orizzontale.

Osservazione:

- $f'(x_0) = 0$ e $f''(x_0) < 0$ implica che il punto x_0 è di massimo locale,
- $f'(x_0) = 0$ e $f''(x_0) > 0$ implica che il punto x_0 è di minimo locale.
- $f'(x_0) = 0$ e $f''(x_0) = 0$ implica che il punto x_0 può essere di massimo o di minimo locale o di flesso a tangente orizzontale, per scoprire la natura di x_0 bisogna calcolare le derivate successive di f in x_0 .

- $f(x) = x^{2n}$ ha $f'(0) = f''(0) = \dots = f^{(2n-1)}(0) = 0$, $f^{(2n)}(0) \neq 0$ quindi 0 è punto di minimo locale
- 2) $f(x) = x^{2n+1}$ ha $f'(0) = f''(0) = \dots = f^{(2n)}(0) = 0$, $f^{(2n+1)}(0) \neq 0$ quindi $0 \neq 0$ punto di flesso a tangente orizzontale.
- 3) $f(x) = \cos(2x)$ per $x \in [0,2\pi]$ le derivate si considerano per $x \in (0,2\pi)$: $f'(x) = -2\sin(2x), \ f''(x) = -4\cos(2x).$
- 4) $f'(x) = -2\operatorname{sen}(2x) = 0 \to 2x = \pi, 2\pi, 3\pi \to x = \frac{\pi}{2}, \pi, \frac{3\pi}{2}$

$$f''\left(\frac{\pi}{2}\right) = -4\cos(\pi) = 4 > 0 \text{ quindi } x = \frac{\pi}{2} \text{ è punto di minimo locale.}$$
$$f''(\pi) = -4\cos(2\pi) = -4 < 0 \text{ quindi } x = \pi \text{ è punto di massimo locale}$$

$$f''(\pi) = -4\cos(2\pi) = -4 < 0$$
 quindi $x = \pi \grave{e}$ punto di massimo locale

$$f''\left(\frac{3\pi}{2}\right) = -4\cos(3\pi) = -4 > 0$$
 quindi $x = \frac{3\pi}{2}$ è punto di minimo locale.

