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(text) corpus a large and structured set of texts for analysis
Document each of the units of a corpus (e.g. a tweet or a FB post)
Token piece/part of a document (word, phrase, sentence,…)
Tokenization process of splitting text into tokens

is a corpus with 2 documents, where each document is a sentence. The first document has 7 tokens. The 
second has 8 tokens.

stop words common words that often do not provide any additional insight, such as articles. They are 
designated for exclusion from any analysis of a text

Some key basic concepts
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Text mining project workflow
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The figure shows a high level workflow of a text 
mining project, with structured predefined steps 
that are applied to the unorganized text to reach 
the final output or conclusion. 

From Kwartler T. (2017), Text Mining in practice with R, Wiley. 



1) Define the problem and specific goals. As the practitioner, you need to acquire subject matter 
expertise sufficient to define the problem and the outcome in an appropriate manner.

2) Identify the text that needs to be collected. Care must be taken to explicitly select text that is 
appropriate to the problem definition. Typical sources are web scraping and the use of APIs.

3) Organize the text. Once the appropriate text is identified, it is collected and organized into a corpus or 
collection of documents.

4) Preprocessing. Clear and prepare the text for subsequent analyses. Examples include making all text 
lowercase, or removing punctuation.

5) Analyze. Apply the analytical technique to the prepared text. The goal of applying an analytical 
methodology is to gain an insight or a recommendation or to confirm existing knowledge about the 
problem. The analysis can be relatively simple, such as searching for a keyword, or it may be an 
extremely complex algorithm.

6) Reach an insight or recommendation. The end result of the analysis is to apply the output to the 
problem definition or expected goal.

Text mining project workflow
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Overall there are two types of text mining, one called “bag of words” and the other “syntactic parsing,” 
each with its benefits and shortcomings.

Bag of words treats every word (or group of words) as a unique feature of the document. Word order and 
grammatical word type are not captured in a bag of word analysis. This approach disregards grammar and 
word order and uses word frequencies as features.

One benefit of the bag of words approach is that it is generally not computationally
expensive or too technical.

Syntactic parsing differs from the bag of words approach in its complexity and approach. It is based on 
word syntax.

At its root, syntax represents a set of rules that define the components of a sentence that then combine to 
form the sentence itself (similar to building blocks). Syntactic parsing uses part of speech tagging
techniques to identify the words themselves in a grammartical or useful context. It creates the building 
blocks that make up a sentence. Then the blocks are anlysed to draw out the insight. The building block
methodologies can become relatively complicated.

Types of Text Mining
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tidytext: uses tidy data principles, which can make many text mining tasks easier, more effective, and 
consistent with tools already in wide use. One of its benefits is that it works very well in tandem with other 
tidy tools in R such as dplyr or tidyr. 

tm: provides a comprehensive text mining framework for R, with some powerful functions which will aid in 
text-processing steps and techniques for count-based analysis methods, text clustering, text classification 
and string kernels.

openNLP: provides an R interface to OpenNLP, a machine learning based toolkit for the processing of natural 
language text written in Java.

udpipe: toolkit providing language-agnostic tokenization, tagging, lemmatization and dependency parsing of 
raw text.

quentada: fast, flexiblem and comprehensive framework for quantitative text analysis in R. It provides
functionalities to perform several tasks from NLP – corpus management, preprocessing, exploring and 
analysing keyworks, computing feature similarities and distances – to more advanced statistical analyses, 
such as wordscores, document classification (Naive Bayes) and topic modeling.

Text Mining in R
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We start using the tidytext package

Tidy data principles can make text mining tasks easier, more effective, and consistent with tools already in 
wide use. 

We define the tidy text format as a table with one token per row. For tidy text mining, the token that is stored
in each row is most often a single word, but can also be an n-gram, sentence, or paragraph.  

Treating text as data frames of individual words allows to manipulate, summarise, and visualise the 
characteristics of text easily.

Tidy text format
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String text can, of course, be stored as strings (i.e. character vectors) within R, and often text data is
first read into memory in this form

Corpus These types of objects typically contain raw strings annotated with additional metadata and 
details. 

Document-term matrix This is a sparse matrix describing a collection (i.e., a corpus) of documents with 
one row for each document and one column for each term. The value in the 
matrix is typically word count. Typically, this matrix contains a lot of zeros

Tidy Text Format vs Other Data Structures
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Document term matrix (DTM). Consider the following three tweets:

Abbreviated document term matrix, showing simple word counts contained in the three‐tweet corpus

Tidy Text Format vs Other Data Structures
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At the same time, the tidytext package does not expect a user to keep text data in a tidy form at all times
during an analysis. The package also includes functions to tidy objects from other popular text mining R 
packages.

This allows, for example, a workflow where importing, filtering, and processing is done using dplyr and other
tidy tools, after which the data is converted into a DTM for other applications. The models eventually can 
then be reconverted into a tidy form for interpretation and visualization.

Tidy text format
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We will work with the tibble ‘text.tbl’ (created in Lecture 6) containing Delta tweets from October 1 to October
15, 2015.  Variables:

weekday day of the week
month month
data day of the month
year year
text tweet text
agents agent initial letters

Dataset
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> library(tidyverse) 
> library(tidytext) 



The cleaning steps outlined here represent common and foundational steps.
You can custom your preprocessing steps, depending on the analysis. For instance, in X you may want to 
preprocess specific tokens such as ‘RT’ or ‘#’ by either removing retweets or explicitly identifying hashtag 
tokens as providing more context in the analysis.

We will need to keep track of the tweets. Since this tibble does not have unique Ids, we create them in the new 
tibble called tweets 

> tweets = text.tbl |> 
+ mutate( 
+ ID = seq_along(text) 
+ ) 
> tweets 
# A tibble: 1,377 × 7
weekday month date  year text  agents ID 
<chr> <chr> <dbl> <dbl> <chr> <chr> <int>
1 Thu Oct 1 2015 @mjdout I know t… AA 1 
2 Thu Oct 1 2015 @rmarkerm Terrib… AA 2

Preprocessing
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unnest_tokens() Split a column into tokens, transforming the table into one-token-per-row.

unnest_tokens(

tbl,

output,

input,

token = "words",

to_lower = TRUE,

...

)

Preprocessing
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tbl A data frame

output Output column to be created as string

input Input column that gets split as string

token Unit for tokenizing, or a custom tokenizing function. Some 
built-in options are "words" (default), "characters","ngrams", 
"sentences", "lines", "paragraphs", "regex", "tweets” 
(tokenization by word that preserves usernames, hashtags, 
and URLS ). 

to_lower Whether to convert tokens to lowercase. If tokens include 
URLS (such as with token = "tweets"), such converted URLs 
may no longer be correct.



> tidy.tweets = tweets |> 
+ unnest_tokens(word, text) 
> class(tidy.tweets) 
[1] "tbl_df" "tbl" "data.frame" 
> dim(tidy.tweets) 
[1] 21758 7 
> tidy.tweets
# A tibble: 21,758 × 7
weekday month date  year agents ID word 
<chr> <chr> <dbl> <dbl> <chr> <int> <chr>
1 Thu Oct 1 2015 AA 1 mjdout
2 Thu Oct 1 2015 AA 1 i 
3 Thu Oct 1 2015 AA 1 know 
4 Thu Oct 1 2015 AA 1 that
5 Thu Oct 1 2015 AA 1 can 
6 Thu Oct 1 2015 AA 1 be 
7 Thu Oct 1 2015 AA 1 frustrating
….

Preprocessing
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Check the dimensions of the data 
frame: there are 21 758 rows and 7 
columns. This means that in total
there are 21 758 words (not distinct) 
after the tokenization

>



After using unnest_tokens() each row is split so that there is one token (word) in each row of the new 
tibble. The default tokenization is for single words. 

Further:
� Other columns, such as the line number each word came from, are retained
� Punctuation is removed
� By default, unnest_tokens() converts the tokens to lowercase

Having the text in this format (one-word-per-row), it is possible to manipulate, process, and visualize it using
the standard set of tidytools.

Preprocessing
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Typically in text analysis, we want to remove stopwords. In the tidytext package, stopwords are kept in the 
dataset stop_words, which contains English stop words from three lexicons, as a data frame. 
This dataframe has 1149 rows and 2 variables (word = An English word, lexicon = The source of the stop 
word). 

> class(stop_words) 
[1] "tbl_df" "tbl" "data.frame" 
> dim(stop_words) 
[1] 1149 2 
> str(stop_words) 
tibble [1,149 × 2] (S3: tbl_df/tbl/data.frame) 
$ word : chr [1:1149] "a" "a's" "able" "about" ... 
$ lexicon: chr [1:1149] "SMART" "SMART" "SMART" "SMART" ...

Preprocessing
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> stop_words
# A tibble: 1,149 × 2
word lexicon 
<chr> <chr>
1 a SMART 
2 a’s SMART 
3 able SMART
4 about SMART 
5 above SMART 
6 according SMART 
7 accordingly SMART 
8 across SMART 
9 actually SMART 
10 after SMART 
# … 1,139 more rows # 
> View(stop_words)

Preprocessing
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We shall remove stopwords using the dplyr::anti_join() function. This function filters rows from x based
on the presence of absence of matches in y

anti_join(x, y)

x, y A pair of data frames, data frame extensions (e.g. a tibble)

anti_join() returns all rows from x without a match in y.

Preprocessing
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> tidy.tweets.2 = tidy.tweets |> 
+ anti_join(stop_words) 
Joining with `by = join_by(word)`
> tidy.tweets.2 
# A tibble: 10,231 × 7
weekday month date  year agents ID   word 
<chr> <chr> <dbl> <dbl> <chr> <int> <chr>
1 Thu Oct 1 2015 AA 1   mjdout
2 Thu Oct 1 2015 AA 1   frustra… 
3 Thu Oct 1 2015 AA 1   hope
4 Thu Oct 1 2015 AA 1   parked
5 Thu Oct 1 2015 AA 1   deplaned
6 Thu Oct 1 2015 AA 1   shortly
7 Thu Oct 1 2015 AA 1   patience
8 Thu Oct 1 2015 AA 1   aa 
9 Thu Oct 1 2015 AA 2   rmarkerm
10Thu  Oct 1 2015 AA 2   terribly
# … 10,221 more rows

Preprocessing
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1) Remove stopwords from the tibble tidy.tweets in an equivalent way to the above using one usual verb in 
dplyr.

2) Check equivalence of the results. Hint: you may use the function base::identical. Check its usage in 
the help.

Exercise
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Beyond stopwords contained in stop_words, there might be other words we want to drop from the dataset. 
We can do that simply using the filter() verb in dplyr.

> View(tidy.tweets.2)

Preprocessing
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> tidy.tweets.2 = tidy.tweets.2 |> 
+ filter( + !str_detect(word, "\\d")) 
> tidy.tweets.2 
# A tibble: 8,695 × 7
weekday month date year agents ID   word 
<chr> <chr> <dbl> <dbl> <chr> <int> <chr>
1 Thu Oct 1 2015  AA 1  mjdout
2 Thu Oct 1 2015  AA 1  frustra… 
3 Thu Oct 1 2015  AA 1  hope
4 Thu Oct 1 2015  AA 1  parked
5 Thu Oct 1 2015  AA 1  deplaned
6 Thu Oct 1 2015  AA 1  shortly
7 Thu Oct 1 2015  AA 1  patience
8 Thu Oct 1 2015  AA 1  aa 
9 Thu Oct 1 2015  AA 2  rmarkerm
10Thu Oct 1 2015  AA 2  terribly
# … 8,685 more rows

Preprocessing
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Performing a frequency analysis is often a good place to start when presented with a text mining problem. 
To this purpose, we shall use the count() function, which lets you quickly count the unique values of one or 
more variables

count(x, ..., sort = FALSE, name = NULL)

x A data frame, data frame extension (e.g. a tibble)

sort If TRUE, will show the largest groups at the top

name The name of the new column in the output. If omitted, it will default to n. If there's already a column 
called n, it will error, and require you to specify the name.

A new data frame object is created by putting the original words and the corresponding frequencies next to 
each other,

Frequent terms
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> freq.df = tidy.tweets.2 |> 
+ count(word, sort = TRUE) 
> freq.df
# A tibble: 2,213 × 2
word n 
<chr> <int>
1 dm 181 
2 follow 155 
3 pls 154 
4 hear 151 
5 team 137 
6 confirmation 127 
7 flight 109 
8 pl 104 
9 ng 96 
10 assistance 91 
# … 2,203 more rows

Frequent terms
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We see a lot of tweets have please, 

flight, confirmation, assistance. 

As an airline, this may not be surprising, 

but it can still be insightful to 

understand common issues and help to 

draw inferences.

Reviewing the most frequent terms can 

provide some insight into typical

customer services issues this company 

encountered



Exercise 1
1) Produce the frequency tables of words in tidy.tweets.2 in an equivalent way to the above using the verb

summarise() in dplyr. 
2) Check equivalence of the results.

Exercise 2
With reference to the Delta customer service dataset, 
1) Build the frequency distribution of words of length 2 in the tibble tidy.tweets.2 and inspect it. Do you think

we should retain any of these words?
2) Remove words of length 2 from the tibble tidy.tweets.2 (except those that you think should be retained) 

and name the new tibble tidy.tweets.3.
3) Produce the frequency table of words in tidy.tweets.3.
4) Remove the word ‘t.co’ from tidy.tweets.3 and produce a new frequency table of words.

Exercise for you
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