
Text Mining and Sentiment Analysis

Prof. Annamaria Bianchi
A.Y. 2024/2025

Lecture 7

10 March 2025

Key basic concepts

Types of text mining

Tidy text format

Tidy text format vs other data structures

Preprocessing

Frequent terms

Packages: tidytext

Functions: unnest_tokens(), anti_join(), count()

Outline

2

(text) corpus a large and structured set of texts for analysis
Document each of the units of a corpus (e.g. a tweet or a FB post)
Token piece/part of a document (word, phrase, sentence,…)
Tokenization process of splitting text into tokens

is a corpus with 2 documents, where each document is a sentence. The first document has 7 tokens. The
second has 8 tokens.

stop words common words that often do not provide any additional insight, such as articles. They are
designated for exclusion from any analysis of a text

Some key basic concepts

3

Text mining project workflow

4

The figure shows a high level workflow of a text
mining project, with structured predefined steps
that are applied to the unorganized text to reach
the final output or conclusion.

From Kwartler T. (2017), Text Mining in practice with R, Wiley.

1) Define the problem and specific goals. As the practitioner, you need to acquire subject matter
expertise sufficient to define the problem and the outcome in an appropriate manner.

2) Identify the text that needs to be collected. Care must be taken to explicitly select text that is
appropriate to the problem definition. Typical sources are web scraping and the use of APIs.

3) Organize the text. Once the appropriate text is identified, it is collected and organized into a corpus or
collection of documents.

4) Preprocessing. Clear and prepare the text for subsequent analyses. Examples include making all text
lowercase, or removing punctuation.

5) Analyze. Apply the analytical technique to the prepared text. The goal of applying an analytical
methodology is to gain an insight or a recommendation or to confirm existing knowledge about the
problem. The analysis can be relatively simple, such as searching for a keyword, or it may be an
extremely complex algorithm.

6) Reach an insight or recommendation. The end result of the analysis is to apply the output to the
problem definition or expected goal.

Text mining project workflow

5

Overall there are two types of text mining, one called “bag of words” and the other “syntactic parsing,”
each with its benefits and shortcomings.

Bag of words treats every word (or group of words) as a unique feature of the document. Word order and
grammatical word type are not captured in a bag of word analysis. This approach disregards grammar and
word order and uses word frequencies as features.

One benefit of the bag of words approach is that it is generally not computationally
expensive or too technical.

Syntactic parsing differs from the bag of words approach in its complexity and approach. It is based on
word syntax.

At its root, syntax represents a set of rules that define the components of a sentence that then combine to
form the sentence itself (similar to building blocks). Syntactic parsing uses part of speech tagging
techniques to identify the words themselves in a grammartical or useful context. It creates the building
blocks that make up a sentence. Then the blocks are anlysed to draw out the insight. The building block
methodologies can become relatively complicated.

Types of Text Mining

6

tidytext: uses tidy data principles, which can make many text mining tasks easier, more effective, and
consistent with tools already in wide use. One of its benefits is that it works very well in tandem with other
tidy tools in R such as dplyr or tidyr.

tm: provides a comprehensive text mining framework for R, with some powerful functions which will aid in
text-processing steps and techniques for count-based analysis methods, text clustering, text classification
and string kernels.

openNLP: provides an R interface to OpenNLP, a machine learning based toolkit for the processing of natural
language text written in Java.

udpipe: toolkit providing language-agnostic tokenization, tagging, lemmatization and dependency parsing of
raw text.

quentada: fast, flexiblem and comprehensive framework for quantitative text analysis in R. It provides
functionalities to perform several tasks from NLP – corpus management, preprocessing, exploring and
analysing keyworks, computing feature similarities and distances – to more advanced statistical analyses,
such as wordscores, document classification (Naive Bayes) and topic modeling.

Text Mining in R

7

We start using the tidytext package

Tidy data principles can make text mining tasks easier, more effective, and consistent with tools already in
wide use.

We define the tidy text format as a table with one token per row. For tidy text mining, the token that is stored
in each row is most often a single word, but can also be an n-gram, sentence, or paragraph.

Treating text as data frames of individual words allows to manipulate, summarise, and visualise the
characteristics of text easily.

Tidy text format

8

String text can, of course, be stored as strings (i.e. character vectors) within R, and often text data is
first read into memory in this form

Corpus These types of objects typically contain raw strings annotated with additional metadata and
details.

Document-term matrix This is a sparse matrix describing a collection (i.e., a corpus) of documents with
one row for each document and one column for each term. The value in the
matrix is typically word count. Typically, this matrix contains a lot of zeros

Tidy Text Format vs Other Data Structures

9

Document term matrix (DTM). Consider the following three tweets:

Abbreviated document term matrix, showing simple word counts contained in the three‐tweet corpus

Tidy Text Format vs Other Data Structures

10

At the same time, the tidytext package does not expect a user to keep text data in a tidy form at all times
during an analysis. The package also includes functions to tidy objects from other popular text mining R
packages.

This allows, for example, a workflow where importing, filtering, and processing is done using dplyr and other
tidy tools, after which the data is converted into a DTM for other applications. The models eventually can
then be reconverted into a tidy form for interpretation and visualization.

Tidy text format

11

We will work with the tibble ‘text.tbl’ (created in Lecture 6) containing Delta tweets from October 1 to October
15, 2015. Variables:

weekday day of the week
month month
data day of the month
year year
text tweet text
agents agent initial letters

Dataset

12

> library(tidyverse)
> library(tidytext)

The cleaning steps outlined here represent common and foundational steps.
You can custom your preprocessing steps, depending on the analysis. For instance, in X you may want to
preprocess specific tokens such as ‘RT’ or ‘#’ by either removing retweets or explicitly identifying hashtag
tokens as providing more context in the analysis.

We will need to keep track of the tweets. Since this tibble does not have unique Ids, we create them in the new
tibble called tweets

> tweets = text.tbl |>
+ mutate(
+ ID = seq_along(text)
+)
> tweets
A tibble: 1,377 × 7
weekday month date year text agents ID
<chr> <chr> <dbl> <dbl> <chr> <chr> <int>
1 Thu Oct 1 2015 @mjdout I know t… AA 1
2 Thu Oct 1 2015 @rmarkerm Terrib… AA 2

Preprocessing

13

>

unnest_tokens() Split a column into tokens, transforming the table into one-token-per-row.

unnest_tokens(

tbl,

output,

input,

token = "words",

to_lower = TRUE,

...

)

Preprocessing

14

tbl A data frame

output Output column to be created as string

input Input column that gets split as string

token Unit for tokenizing, or a custom tokenizing function. Some
built-in options are "words" (default), "characters","ngrams",
"sentences", "lines", "paragraphs", "regex", "tweets”
(tokenization by word that preserves usernames, hashtags,
and URLS).

to_lower Whether to convert tokens to lowercase. If tokens include
URLS (such as with token = "tweets"), such converted URLs
may no longer be correct.

> tidy.tweets = tweets |>
+ unnest_tokens(word, text)
> class(tidy.tweets)
[1] "tbl_df" "tbl" "data.frame"
> dim(tidy.tweets)
[1] 21758 7
> tidy.tweets
A tibble: 21,758 × 7
weekday month date year agents ID word
<chr> <chr> <dbl> <dbl> <chr> <int> <chr>
1 Thu Oct 1 2015 AA 1 mjdout
2 Thu Oct 1 2015 AA 1 i
3 Thu Oct 1 2015 AA 1 know
4 Thu Oct 1 2015 AA 1 that
5 Thu Oct 1 2015 AA 1 can
6 Thu Oct 1 2015 AA 1 be
7 Thu Oct 1 2015 AA 1 frustrating
….

Preprocessing

15

Check the dimensions of the data
frame: there are 21 758 rows and 7
columns. This means that in total
there are 21 758 words (not distinct)
after the tokenization

>

After using unnest_tokens() each row is split so that there is one token (word) in each row of the new
tibble. The default tokenization is for single words.

Further:
� Other columns, such as the line number each word came from, are retained
� Punctuation is removed
� By default, unnest_tokens() converts the tokens to lowercase

Having the text in this format (one-word-per-row), it is possible to manipulate, process, and visualize it using
the standard set of tidytools.

Preprocessing

16

Typically in text analysis, we want to remove stopwords. In the tidytext package, stopwords are kept in the
dataset stop_words, which contains English stop words from three lexicons, as a data frame.
This dataframe has 1149 rows and 2 variables (word = An English word, lexicon = The source of the stop
word).

> class(stop_words)
[1] "tbl_df" "tbl" "data.frame"
> dim(stop_words)
[1] 1149 2
> str(stop_words)
tibble [1,149 × 2] (S3: tbl_df/tbl/data.frame)
$ word : chr [1:1149] "a" "a's" "able" "about" ...
$ lexicon: chr [1:1149] "SMART" "SMART" "SMART" "SMART" ...

Preprocessing

17

>

> stop_words
A tibble: 1,149 × 2
word lexicon
<chr> <chr>
1 a SMART
2 a’s SMART
3 able SMART
4 about SMART
5 above SMART
6 according SMART
7 accordingly SMART
8 across SMART
9 actually SMART
10 after SMART
… 1,139 more rows #
> View(stop_words)

Preprocessing

18

>

We shall remove stopwords using the dplyr::anti_join() function. This function filters rows from x based
on the presence of absence of matches in y

anti_join(x, y)

x, y A pair of data frames, data frame extensions (e.g. a tibble)

anti_join() returns all rows from x without a match in y.

Preprocessing

19

> tidy.tweets.2 = tidy.tweets |>
+ anti_join(stop_words)
Joining with `by = join_by(word)`
> tidy.tweets.2
A tibble: 10,231 × 7
weekday month date year agents ID word
<chr> <chr> <dbl> <dbl> <chr> <int> <chr>
1 Thu Oct 1 2015 AA 1 mjdout
2 Thu Oct 1 2015 AA 1 frustra…
3 Thu Oct 1 2015 AA 1 hope
4 Thu Oct 1 2015 AA 1 parked
5 Thu Oct 1 2015 AA 1 deplaned
6 Thu Oct 1 2015 AA 1 shortly
7 Thu Oct 1 2015 AA 1 patience
8 Thu Oct 1 2015 AA 1 aa
9 Thu Oct 1 2015 AA 2 rmarkerm
10Thu Oct 1 2015 AA 2 terribly
… 10,221 more rows

Preprocessing

20

>

1) Remove stopwords from the tibble tidy.tweets in an equivalent way to the above using one usual verb in
dplyr.

2) Check equivalence of the results. Hint: you may use the function base::identical. Check its usage in
the help.

Exercise

21

Beyond stopwords contained in stop_words, there might be other words we want to drop from the dataset.
We can do that simply using the filter() verb in dplyr.

> View(tidy.tweets.2)

Preprocessing

22

> tidy.tweets.2 = tidy.tweets.2 |>
+ filter(+ !str_detect(word, "\\d"))
> tidy.tweets.2
A tibble: 8,695 × 7
weekday month date year agents ID word
<chr> <chr> <dbl> <dbl> <chr> <int> <chr>
1 Thu Oct 1 2015 AA 1 mjdout
2 Thu Oct 1 2015 AA 1 frustra…
3 Thu Oct 1 2015 AA 1 hope
4 Thu Oct 1 2015 AA 1 parked
5 Thu Oct 1 2015 AA 1 deplaned
6 Thu Oct 1 2015 AA 1 shortly
7 Thu Oct 1 2015 AA 1 patience
8 Thu Oct 1 2015 AA 1 aa
9 Thu Oct 1 2015 AA 2 rmarkerm
10Thu Oct 1 2015 AA 2 terribly
… 8,685 more rows

Preprocessing

23

Performing a frequency analysis is often a good place to start when presented with a text mining problem.
To this purpose, we shall use the count() function, which lets you quickly count the unique values of one or
more variables

count(x, ..., sort = FALSE, name = NULL)

x A data frame, data frame extension (e.g. a tibble)

sort If TRUE, will show the largest groups at the top

name The name of the new column in the output. If omitted, it will default to n. If there's already a column
called n, it will error, and require you to specify the name.

A new data frame object is created by putting the original words and the corresponding frequencies next to
each other,

Frequent terms

24

> freq.df = tidy.tweets.2 |>
+ count(word, sort = TRUE)
> freq.df
A tibble: 2,213 × 2
word n
<chr> <int>
1 dm 181
2 follow 155
3 pls 154
4 hear 151
5 team 137
6 confirmation 127
7 flight 109
8 pl 104
9 ng 96
10 assistance 91
… 2,203 more rows

Frequent terms

25

We see a lot of tweets have please,

flight, confirmation, assistance.

As an airline, this may not be surprising,

but it can still be insightful to

understand common issues and help to

draw inferences.

Reviewing the most frequent terms can

provide some insight into typical

customer services issues this company

encountered

Exercise 1
1) Produce the frequency tables of words in tidy.tweets.2 in an equivalent way to the above using the verb

summarise() in dplyr.
2) Check equivalence of the results.

Exercise 2
With reference to the Delta customer service dataset,
1) Build the frequency distribution of words of length 2 in the tibble tidy.tweets.2 and inspect it. Do you think

we should retain any of these words?
2) Remove words of length 2 from the tibble tidy.tweets.2 (except those that you think should be retained)

and name the new tibble tidy.tweets.3.
3) Produce the frequency table of words in tidy.tweets.3.
4) Remove the word ‘t.co’ from tidy.tweets.3 and produce a new frequency table of words.

Exercise for you

26

