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Packages: ggplot2, wordcloud, widyr, igraph, ggraph

Functions: wordcloud::wordcloud(), widyr:: pairwise_count(), widyr::pairwie_cor(), 
igraph::graph_from_data_frame(), ggraph::ggraph(),

dplyr::slice_min(), slice_max()
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A bar plot is the simplest graph to display term frequencies. There are two types of bar charts:
geom_bar() and geom_col():
� geom_bar() makes the height of the bar proportional to the number of cases in each group (or if

the weight aesthetic is supplied, the sum of the weights). geom_bar() uses stat_count() by default: it
counts the number of cases at each x position.

� geom_col() makes the height of the bar proportional to values in the data. geom_col() uses
stat_identity: it leaves the data as is.

coord_flip() switches the x- and y-axes. This is useful for example if you want horizontal bars and in case 
of long labels.

To control the order of the terms we use the reorder() function.

Bar charts
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Let us start from the freq.df.4 data frame object. This becomes the data used by ggplot2 to construct the bar 
plot

> freq.df |> filter(n>50) |> 
+ mutate(word = reorder(word, n)) |> 
+ ggplot(aes(word, n, fill = word)) + 
+ geom_col(show.legend = F) + 
+ xlab(NULL) + 
+ ylab('Word count') + 
+ ggtitle('Most common words in tweets') + 
+ coord_flip()

Term frequency visualization
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Term frequency visualization
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Another common visualization is called a word cloud. A word cloud (or tag cloud) can be an handy tool when 
you need to highlight the most commonly cited words in a text using a quick visualization.
Generally, a word cloud is a visualization based on frequency. In a word cloud, words are represented with 
varying font size. 
In a simple word cloud, only one dimension of information is shown. Specifically, the font size corresponds to 
word frequency. This means that the larger a word in the word cloud, the more frequent the word is in the 
corpus.
Other dimensions of a word cloud can be changed to demonstrate new information, such as color and 
grouping. 

In general, word clouds are popular because audiences can easily comprehend the illustration. This has led to 
an over use of word clouds during text mining projects. In general, it is best to use word clouds sparingly
despite their popularity.

We will use the wordcloud library. It has several interesting wordcloud functions. The simplest is named
wordcloud

Word cloud
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wordcloud() Plot a word cloud

wordcloud(words,freq,scale=c(4,.5),min.freq=3,max.words=Inf,

random.order=TRUE, random.color=FALSE, rot.per=.1,colors="black", ...)

words the words

freq their frequencies

scale A vector of length 2 indicating the range of the size of the words.

min.freq words with frequency below min.freq will not be plotted

max.words Maximum number of words to be plotted. least frequent terms dropped

random.order plot words in random order. If false, they will be plotted in decreasing frequency

random.color choose colors randomly from the colors. If false, the color is chosen based on the frequency

rot.per proportion words with 90 degree rotation

colors color words from least to most frequent

Word cloud
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> install.packages("wordcloud")
> library(wordcloud)

> dev.new(width = 3000, height = 1500, unit = "px") 
NULL 
> wordcloud(freq.df$word, 
+ freq.df$n, 
+ max.words=100)

Word cloud

8



> wordcloud(freq.df$word, freq.df$n, 
+ max.words=100, 
+ rot.per=.3, 
+ colors=brewer.pal(8,"Dark2"))

> brewer.pal.info
> display.brewer.pal(8, "Dark2")

Word cloud
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In text mining, association is similar to correlation. That is, when term x appears, the other term y is 
associated with it. It is not directly related to frequency, but instead refers to the term pairings.

We may want to understand which pairs of words co-appear.

To this purpose, we use the package widyr

> install.packages("widyr")

> library(widyr)

With reference to the DeltaAssist example, we want to explore the word associations with the term
«apologies». The term «apologies» was chosen after first reviewing the frequent terms for unexpected items, 
or in this case, to learn about a behaviour of customer service agents.

Word associations
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First, we count common pairs of words co-appearing within the same tweet

widyr::pairwise_count() Count pairs of items within a group

pairwise_count(tbl, item, feature, ...)

tbl Table

item Item to count pairs of; will end up in item1 and item2 columns

feature Column within which to count pairs item2 columns

Word associations
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> word_pairs = tidy.tweets.2 |> 
+ pairwise_count(word, ID, sort = TRUE) 
> word_pairs
# A tibble: 39,734 × 3
item1 item2 n 
<chr> <chr> <dbl>
1 dm follow 129 
2 follow dm 129 
3 confirmation dm 93 
4 dm confirmation 93 
5 confirmation follow 78 
6 follow confirmation 78 
7 follow pls 59 
8 pls follow 59 
9 t.co http 54 
10 http t.co 54 
# … 39,724 more rows
> View(word_pairs)

Word associations
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The output provides the pairs of words 
as two variables (item1 and item2). This 
allows us to perform normal text mining 
activities like looking for what words are 
most associated with “apologies” 



> apol_pairs = word_pairs |> 
+ filter(item1 == "apologies") |> 
+ arrange(desc(n)) 
> View(apol_pairs)

Word associations
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The most common co-appearing words only tells us part of the story. We may also want to know how often 
words appear together relative to how often they appear separately, or the correlation among words. 
Regarding text, correlation among words is measured in a binary form - either the words appear together or 
they do not. A common measure for such binary correlation is the phi coefficient.

The phi coefficient focuses on how much more likely it is that either both words X and Y appear, or neither do, 
than that one appears without the other.

Consider the following table:

For example, n
11

represents the number of documents where both word X and word Y appear, n
00

the number 
where neither appears, and n

10
and n

01
the cases where one appears without the other. 

Word associations
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The phi coefficient is:

Two binary variables are considered positively associated if most of the data falls along the diagonal cells. In 
contrast, two binary variables are considered negatively associated if most of the data falls off the diagonal.

The pairwise_cor() function in widyr lets us find the correlation between words based on how often they 
appear in the same section. Its syntax is similar to pairwise_count(). 

Word associations
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> word_cor = tidy.tweets.2 |> 
+ pairwise_cor(word, ID) |> 
+ filter(correlation>0.11) 
> apol_cor = word_cor |> 
+ filter(item1 == "apologies") |> 
+ arrange(desc(correlation)) 
> View(apol_cor)

Word associations
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Once you have a data frame of highly associated words and their corresponding values, you can use it for 
building another graph, using ggplot as follows.
Set the y axis to be the terms and the x axis to be the values and use the function geom_point(), setting the 
size explicitly.

We can now produce a plot showing the most associated words with «apologies».

> apol_cor |> 
+ ggplot(aes(x=correlation, y=item2))+ 
+ geom_point(size = 4)+ 
+ ylab(NULL)+ 
+ xlab("Correlation with 'apologies'")

Word associations
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Word associations
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The most associated word from 

DeltaAssist’s use of apologies

is «delay»



We might be interested in visualizing all of the relationships among words simultaneously, rather than just the 
top few at a time. A common visualization technique consists in arranging the words into a network.
Network structures are interesting in conveying multiple types of information visually:

� Used to identify key terms
� Show relationship strength, leading to an assumption of a topic

Caution. Word networks can become dense and hard to interpret visually. It is thus important to restrict the 
number of terms that are being connected.

Word Networks
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The circles are called nodes (or vertices).
The lines connecting the circles are called edges.

A network graph can have many dimensions of information
contained in it. The example presented has the same size
nodes and edge thickness. However, some of the parameters
can be adjusted:
� size of the nodes showing more prominent members
� thickness of lines representing the strength of the connection
� color denoting particular class attribution (e.g. gender)

Word networks can also be used to understand word choice by visually producing clusters.

Word Networks
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A graph can be constructed from a tidy object as long as it has three variables:
� from: the node an edge is coming from
� to: the node an edge is going toward
� weight: a numeric value associated with each edge

In order to produce word networks we will use:
� igraph package, which has many powerful functions for manipulating and analyzing networks. We will use it

to create an igraph graph object 

� ggraph package, that implements visualizations using the grammar of graphics

> install.packages("igraph")
> library(igraph)
> install.packages("ggraph")
> library(ggraph)

Word Networks
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In the following, we refer to the Delta Airlines example. We have just seen that the words «apologies» and 
«refund» are highly associated. A word network may more broadly indicate under what circumstances Delta 
would issue a refund. We limit the network illustration to the word «refund».

We proceed as follows:
1) Select original tweets containing the word «refund» [we obtain only 7 tweets]
2) To further reduce clutter, we select the first three of the refund-mentioning tweets
3) Transform the text in tidy format and clean it
4) Build a pairwise count data frame
5) Use a function in igraph to build an igraph object
6) Build the word network using the package ggraph

Word Networks
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1) Select original tweets containing the word «refund» [we obtain only 7 tweets]

> refund = tweets |> 
+ filter(str_detect(text, regex("refund", ignore_case = T))) 
> refund
# A tibble: 7 × 7
weekday month date year text agents ID 
<chr> <chr> <dbl> <dbl> <chr> <chr> <int>
1 Thu Oct 1 2015  @lanaandlovely For future r…  KC 49 
2 Sun Oct 4 2015  @gsstan Hello Andrew. Apolog… /2 347 
3 Tue    Oct 6 2015  @NickRogersRx I'm sorry, but… WG 487 
4 Tue    Oct 6 2015  @NickRogersRx I don't see a … WG 489 
5 Sun Oct 11 2015  @Aj_Marshall17 AJ. Are you a… /2 1004 
6 Mon Oct 12 2015  @Kyrrie_Twin Kyrrie, we offe… VM 1043 
7 Mon Oct 12 2015  @TchCzarina The miles would … EC 1091

Word Networks
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2) To further reduce clutter, we select the last three of the refund-mentioning tweets
3) Transform the text in tidy format and clean it

tidy.refund = refund |>
+ slice_min(ID, n = 3) |>
+ unnest_tokens(word, text) |>
+ anti_join(stop_words) |>
+ filter(!str_detect(word, "\\d")) 
Joining with `by = join_by(word)`
> tidy.refund
# A tibble: 22 × 7
weekday month date year agents ID word 
<chr> <chr> <dbl> <dbl> <chr> <int> <chr>
1 Thu Oct 1   2015   KC   49 lanaandlovely
2 Thu Oct 1   2015   KC   49 future 
3 Thu Oct 1   2015   KC   49 reference
4 Thu Oct 1   2015   KC   49 fare

Word Networks
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The functions dplyr::slice_min() and dplyr::slice_max() select rows with lowest or highest values of a 

variable.

slice_min(data, order_by, n, ….)

data A data frame, data frame extension (e.g. a tibble)

order_by Variable to order by.

n the number of rows to select

Word Networks
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4) Build a pairwise count data frame
> refund_pairs = tidy.refund |> 
+ pairwise_count(word, ID, sort = TRUE) 
> refund_pairs
# A tibble: 140 × 3
item1 item2 n 
<chr> <chr> <dbl>
1 refund apologies 2 
2 apologies refund 2 
3 future lanaandlovely 1 
4 reference lanaandlovely 1 
5 fare lanaandlovely 1 
6 options lanaandlovely 1 
7 refundable lanaandlovely 1 
8 changeable lanaandlovely 1 
9 kc lanaandlovely 1 
10 lanaandlovely future 1 
# … 130 more rows

Word Networks
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5) Use a function in igraph to build an igraph object

The function igraph::graph_from_data_frame() creates igraph graph objects from a data frame

graph_from_data_frame(d)

d A data frame containing a symbolic edge list in the first two columns. Additional columns are 
considered as edge attributes.

> refund_network = refund_pairs |> 
+ graph_from_data_frame() 
> refund_network

Word Networks
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6) Build the word network using the package ggraph

We can convert igraph object into a graph with the ggraph::ggraph function, after which we add layers to it. 
For a basic graph, we need to add three layers: nodes, edges, and text

ggraph(graph, layout = "auto", ...)

graph The object containing the graph.

layout The type of layout to create.

The function ggraph::geom_edge_link() draw edges as straight lines between nodes
The function ggraph::geom_node_point() allows for simple plotting of nodes in different shapes, colours
and sizes.
The function ggraph::geom_node_text() annotates nodes with text

Word Networks
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6) Build the word network using the package ggraph

> set.seed(2021) 
> dev.new(width = 3000, height = 1500, unit = "px") 
NULL 
> ggraph(refund_network, layout = "fr") + 
+ geom_edge_link() + + geom_node_point() + 
+ geom_node_text(aes(label = name), vjust = 1, hjust = 1)

Word Networks
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The plot allows to visualise some details of the text structure. It shows a strong connection between refund
and apologies. We shall identify three clusters, corresponding to the three tweets.

The first two clusters are linked by the words «apologies» and «refund».
Still the third tweet stands alone. This is because it has the word refundable, which was included by the 
selection, even though it is technically a different term than «refund», so no network connection was created
linking all three.

Word Networks
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The data set chardonnay.csv contains tweets related to wine Chardonnay. Write R code to perform the 
following
1. Import the dataset and create a tibble named chardonnay.tweets.
2. Inspect the imported dataset.
3. Select the variable n.doc and text.
4. Convert the tibble to the tidy format and remove stopwords, creating a new tibble named tidy.chardonnay.
5. Produce the frequency table of words in tidy.chardonnay, named chardonnay.freq.
6. Create a wordcloud for the values in chardonnay.freq. What do you notice?
7. Create a custom stopwords tibble by adding to the tidy dataset stop_words the words "http", "https", "rt", 

"t.co", "ed“, "amp", "chardonnay",  "wine", "glass“.
8. Create a new tibble named tidy.chardonnay.2 by removing the custom stopwords. Further remove all

words starting with “00“ and the elements made by one digit.
9. Produce the frequency table of words in tidy.chardonnay.2, named chardonnay.freq.2.
10. Create a wordcloud for the values in chardonnay.freq.2.
11. Explore the use of different colors for the plot. You can take a look at some available colors with 

head(colors(),50).
12. Explore the use of prebuilt color palettes, using the function brewer.pal().

Exercise for you
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13. Build a frequency plot for the most frequent words in the dataset.
14. Explore word co-appearence using the function pairwise_count(). Which are the words that co-appear

most often? Does that make sense?
15. Explore which are the words most often co-appearing with “cabernet“.
16. Compute the phi coefficient for words co-appearing with “cabernet“.

Exercise for you
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