
Text Mining and Sentiment Analysis

Prof. Annamaria Bianchi
A.Y. 2024/2025

Lecture 13

7 April 2025

Outline

SA with amplifiers, de-amplifiers and negators

Lemmatisation and stemming

Packages: base, tidyverse, tidytext, udpipe

Example with bos.airbnb data
We implement a dictionary-based sentiment analysis using Bing. We consider two cases:
• A basic analysis using Bing;
• A more sophisticated analysis using Bing and including negators, amplifiers and de-amplifiers.

> sent_bing <- txt_sentiment(x = output, + term = "token",

+ polarity_terms = bing_dict, + polarity_negators = "",

+ polarity_amplifiers = "",

+ polarity_deamplifiers = "",

+ amplifier_weight = 0,

+ n_before = 0,

+ n_after = 0,

+ constrain = F)

> data$bing = sent_bing$overall$sentiment_polarity

Example with bos.airbnb data

> sent_udpipe <- txt_sentiment(x = output,
+ term = "token",
+ polarity_terms = bing_dict,
+ polarity_negators = c("not", "neither", "no", "without"),
+ polarity_amplifiers = c("really", "very", "definitely", "super"),
+ polarity_deamplifiers =c ("barely", "hardly"),
+ amplifier_weight = 0.8,
+ n_before = 2,
+ n_after = 0,
+ constrain = F)

> data$udpipe = sent_udpipe$overall$sentiment_polarity

Comparison

Exercise. Built two variables, named bing_pol and udpipe_pol, identifying three categories in the
polarity scores (positive, negative, and neutral).

Comparison

> table(BING=data$bing_pol,UDPIPE=data$udpipe_pol)

Lemmatization and Stemming

Term normalization is the process of transforming a term into a single, standardized
form. Lemmatization and stemming are two alternative methodologies for word
normalization:

• Lemmatization: is the process of determining the lemma of a word based on the
context and identifying the part of speech of each word. This is done by implementing
Machine Learning algorithms and can be computationally expensive;

• Stemming: is the process of reducing the word to its «stem» (or root) eliminating the
suffix. It is less computational expensive than lemmatization;

Both methods are used in order to reduce the dimensionality and speed up the
estimation processes when implementing more sophisticated analyses (Topic Modeling,
Machine learning algrithms).

Lemmatization and Stemming

• Stemming works well with languages such as English, where words have a common
root, but

• Lemmatization is better for interpretability.

• For example:

Word Lemma Stem

Caring Care Car

Running Run Run

udpipe and SnowballC

In order to compare stemming and lemmatization we consider the
udpipe and snowballC packages.

• udpipe::udpipe(data, model): implements several NPL functions,
including tokenization, lemmatization, part of speech (POS) tagging,
and some additional information including dependences between
words. To do that, it uses some pre-trained models. For the english
language, the most common model is «english-gum». It does not
include stemming.

• SnowballC::wordStem(words,language): is a popular stemmer
based on Porter’s word stemming algorithm.

Part-of-Speech (POS) tagging

• POS tagging finds grammatical tags based on ML models.

• It is the process of marking up the words with a particular part of speech.

• This is done based on the word context: relationship with adjacent and related
words in the sentence (or paragraph).

• Categories include: noun, verb, article, adjective, preposition, pronoun, adverb,
conjuction, etc.

• They are in the upos (universal pos taggers) column of the output udpipe()
table.

• The function also returns xpos tags, which are based on a different classification

Database

We keep working with the Boston Airbnb comments. We will be using the
dataset output.rds, that was obtained in Lecture 12 using the function
udpipe().

udpipe function

The data.frame obtained with the udpipe() function has the following fields:

• doc_id: The document identifier
• token: The token.
• lemma: The lemma of the token.
• upos: The universal parts of speech tag of the token.
• xpos: The treebank-specific parts of speech tag of the token.
• feats: The morphological features of the token, separated by |.

udpipe function

> View(output)

Stem

The function SnowballC::wordStem() extracts the stems of each of the given words
in the vector.

wordStem(words, language = "porter")

words a character vector of words whose stems are to be extracted.

language the name of a recognized language, as returned by getStemLanguages,
or a two- or three-letter ISO-639 code corresponding to one of these
languages (see references for the list of codes).

The output is a character vector with as many elements as there are in the input vector
with the corresponding elements being the stem of the word.

Stem

We add the stem to the output dataset in order to compare stems with the lemmas for
Boston Airbnb reviews

> output = output |>

+ mutate(stem = wordStem(token))

> View(output)

Comparing lemmas and stems

We can compare words (token), lemmas and stems of verbs and adjectives:

Exercises for you

Exercise 1. With reference to the Airbnb data, for some reviews different outcome was
obtained implementing a basic analysis using Bing or a more sophisticated analysis using
Bing and including negators, amplifiers and de-amplifiers (Slide 6). Focusing on reviews n.
186 and n. 401, try to understand how the polarity are computed in the two cases.
Hint: it is convenient to look at the overall dataframe created as output from the function
txt_sentiment().

Exercise for you

Exercise 2. The file data.csv contains 220 reviews about an hotel. The true sentiment is in
the column sentiment. Write proper R code to perform the following tasks:
1. Apply the udpipe function in order to tokenize the text.
2. Apply the dictionary-based sentiment analysis. Use tokens to perform the basic

sentiment analysis with bing. Then, repeat the tasks adding polarity negators,
amplifiers, deamplifiers. Consider an amplifier weight equal to 0.8 and look for 3 words
before.

3. Compare the overall sentiment obtained with the different methods and also with the
true score.

4. Check the number of reviews that have received reverted polarity using the different
methods and with respect to the true score.

Exercise for you

Exercise 3. With reference to the same data used in the previous exercise (output from
udpipe() function), write proper R code to perform the following tasks:
1. Add a column with the stem
2. Compare the token (word), lemma and stem for the first 15 observations, considering
only nouns first and next only adjectives.
3. Plot the 10 most common stems which are noun
4. Plot the top 10 adjectives, considering the lemma and by the true sentiment.
5. Apply the dictionary sentiment analysis. Use lemmas to perform the basic sentiment
analysis with bing. Then, repeat the tasks adding polarity negators, amplifiers,
deamplifiers. Consider an amplifier weight equal to 0.8 and look for 3 words before.
6. Compare the results using the different methods and with the true score.

