
Text Mining and Sentiment Analysis

Prof. Annamaria Bianchi
A.Y. 2024/2025

Lecture 21

20 May 2025



Introduction to Web Scraping with R

Outline

2



rvest package

3

rvest helps scrape (or harvest) data from web pages. rvest is a member of the tidyverse but is not a core 
member, so you will need to load it explicitly

> library(tidyverse) 
> library(rvest)



Parsing

4

 HTML documents use markup to store information and create the visual appearance of the webpage when 
opened in the browser.

 The first step in web scraping is to load and represent the contents of HTML files in an R session. To achieve 
a useful representation of HTML files, we need to employ a function that understands the special meaning 
of the markup structures and reconstructs the implied hierarchy of an HTML file within some R-specific 
data structure. This representation is also referred to as the Document Object Model (DOM). This 
transformation is called parsing.



Parsing

5

read_html() parses web documents and returns an xlm_document, which you’ll then manipulate usign
rvest functions. It works by performing a HTTP request then parsing the HTML received using the xml2 
package. This is "static" scraping because it operates only on the raw HTML file.

read_html(x,…)

x Usually a string representing a URL or a path for an HTML file



Parsing

6

Let us consider the fortunes.html example from the Munzert et al. (2015) book:

> fortunes <- read_html("fortunes.html") 
> class(fortunes) 
[1] "xml_document" "xml_node" 
> fortunes
{html_document} 
<html> 
[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset ... 
[2] <body>\n<div id="R Inventor" lang="english" date="June/2003">\n <h ... 
[3] <div class="XTranslate"></div>



Xpath and CSS Selector

7

Two ways for extracting the relevant information from HTML files:

 XPath is a query language. It is based on the hierarchical structure in the DOM in order to specify the path.

 CSS Selectors identify elements on the basis of their style.

Assume we want to extract information from the <i> nodes (text written in italics) from the fortune.html file



html_element() function

8

html_element() and html_elements() find HTML element using CSS selectors or XPath expressions. 

html_element(x, css, xpath)

html_elements(x, css, xpath)

x Either a document, a node set or a single node.

css, xpath Elements to select. Supply one of css or xpath depending on whether you want to use a CSS 
selector or XPath 1.0 expression.

The function html_element() extracts the first element with the specified characteristic

and html_elements() extracts all the elements with that characteristic.



XPath

9

Main characteristics: 

 Absolute paths: start with the root node and continue until the target one. Each note is separated by a 
slash. For example:
> html_elements(fortunes, xpath = "/html/body/div/p/i") 
{xml_nodeset (2)} 
[1] <i>'What we have is nice, but we need something very different'</i> 
[2] <i>'R is wonderful, but it cannot work magic'</i>

 Relative paths: we use double slashes “//” to skip nodes. For example:

> html_elements(fortunes, xpath = "//p/i")

{xml_nodeset (2)} 
[1] <i>'What we have is nice, but we need something very different'</i> 
[2] <i>'R is wonderful, but it cannot work magic'</i>

You can choose absolute or relative paths according to your objective. Relative paths are faster to write but 
require more computation time if the file is big.



XPath

10

 Wildcard operator: it is the "*" whith matches any node.
> html_elements(fortunes, xpath = "/html/body/div/*/i") 
{xml_nodeset (2)} 
[1] <i>'What we have is nice, but we need something very different'</i> 
[2] <i>'R is wonderful, but it cannot work magic'</i>

 Predicates and node relations: express conditions on the node. We do not study these cases.

>



CSS Selector

11

Definition: CSS means Cascading Style Sheets and it is used to describe the layout of an HTML document.
CSS is added to HTML in three ways:
 Inline: using the style attribute inside HTML element:

 Internal: using the <style> element in the <head> section:

>



CSS Selector

12

 External: using a link to a style sheet in the <head> section

We do not focus on styles but we use the CSS selectors which define the elements to which CSS apply.

CSS includes a miniature language for selecting elements on a page called CSS selectors. CSS selectors 
define patterns for locating HTML elements.

>



CSS Selector

13

We will mainly focus on the following selectors:
 Type selector: selects all the elements with a given node name. We just indicate the name of element, for 

example p for paragraphs;
 Class selector: selects all the elements with a given class attribute; for example .pkg matches any

element with this class;
 ID selector: selects all the elements with a given id; for example #first matches the element with that id.

A comprehensive list of CSS selectors, can be found here.

CSS selectors can be combined, so for example, p.classname will match all the paragraphs with the specified

class.

An important CSS combinator is the space " ". It is called descendant combinator and it allows to select all the 

elements inside the previously specified element.

Another way to use CSS selectors is to use the CSS attribute value [attribute_name="value"].

>

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors


SelectorGadget

14

In order to find the CSS selector you need (or the XPath), you can simply go on the website

https://rvest.tidyverse.org/articles/selectorgadget.html

with Firefox, then click with the right mouse button on SelectorGadget and then “Bookmark this link” (or 
“Salva link con nome”).

When you are on the web page you want to scrape, you can click on Bookmark/SelectorGadget, then the 
gadget helps you finding the right selectors.

If you click on the element that you would like your selector to match, the element will turn green. Everything 
that is matched by the selectors becomes yellow and into brackets you can read the number of selected 
elements. To remove the element you can click again and it will turn red. There is also a button to clear the 
selection. If you hold shift it allows to select the elements inside of other selected ones.

>

https://rvest.tidyverse.org/articles/selectorgadget.html


html_text() and html_text2() function

15

There are two ways to retrieve text from a element: html_text() and html_text2(). html_text2() is
usually what you want, but it is much slower than html_text() so for simple applications where
performance is important you may want to use html_text() instead.

html_text(x,…)

html_text2(x,…)

x A document, node, or node set.

A character vector the same length as x

>



Simple examples

16

>

I used the function minimal_html in order 
to create an HTML document. In the e-
learning you will also find the 
corresponding html file that you can open 
and inspect (minimal_html_example).



Simple examples

17

> html <- read_html("minimal_html_example.html") 
> html 
{html_document} <html> 
[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset ... 
[2] <body>\n<div class="mypkg">\n<h1 class="pkg">tidyverse</h1>\n<p cla ...

Extract and display the head and the body:

> html |> 
+ html_element(css = "head") |> 
+ html_text() 
[1] " Page title "

> html |> 
+ html_element(css = "body") |> 
+ html_text2()

>
>



Simple examples

18

Select all the paragraphs:
> html |> 
+ html_elements(css = "p") |> 
+ html_text2() 
[1] "This is an important paragraph" "tidyverse is beautiful" 
[3] "I use rvest for web scraping" "The best book is R4DS" 
[5] "I like the TidyTextMining book" "Other relevant books are:" 
[7] "Other relevant books are:" 

> html |> 
+ html_elements(xpath = "//p") |> 
+ html_text2()

>



Simple examples

19

Select all the paragraphs from the div with class=“mypkg”;

> html |> 
+ html_element(css = "div.mypkg") |> 
+ html_elements(css = "p") |> 
+ html_text2() 
[1] "This is an important paragraph" "tidyverse is beautiful" 
[3] "I use rvest for web scraping" 

In alternative you can use the descendant combinators:
> html |> 
+ html_elements(css = "div.mypkg p") |> 
+ html_text2() 
[1] "This is an important paragraph" "tidyverse is beautiful" 
[3] "I use rvest for web scraping" 

>



Exercise

20

Select the first h2 from the div with class=“mypkg”.

>
>



Exercise for you

21

With reference to the html file, write proper code to do the following:

1. Select all the headers h1;

2. Select the important paragraph from the div with class=“mybook”;

3. Select the paragraph with id=“tidy”.

Make all the required selections using both CSS Selector and XPath.

>

:


