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Abstract
There are enduring misconceptions in the marketing and management literature about the potential biasing effects of Common
Method Variance (CMV). One belief is that the biasing effect of CMV is of greater theoretical than practical importance; another
belief is that if CMV is a potential problem, it can be easily identified with the Harman one-factor test. In this article, we show that
both beliefs are ill founded and need correction. To demonstrate our key points with greater generality, we use analytical
derivations rather than empirical simulations. First, we examine the effects of CMV on correlations between observed variables
as a function of measure unreliability and the sign and size of the “true” trait correlation. We demonstrate that, for negative trait
correlations, CMV leads to a substantial upward bias in observed correlations (i.e., observed correlations are less negative than
the trait correlation), and under certain conditions observed correlations may even have the wrong sign (assuming that the method
loadings are both positive or both negative). We also show that, for positive trait correlations, the downward bias due to
measurement unreliability does not always mitigate the upward bias due to CMV (again assuming that the method loadings
are either both positive or both negative). Importantly, our results indicate that the inflationary effect of CMV is larger at lower
levels of (positive) trait correlations, whereas the deflationary effect of unreliability is larger at higher levels of trait correlations.
Second, we demonstrate analytically the serious deficiencies of the popular Harman one-factor test for detecting commonmethod
variance and strongly recommend against its use in future research.

Keywords Common method variance . Common method bias . Harman one-factor test . Systematic error . Unreliability of
measurement

The potential bias caused by method variance has been of en-
during interest to marketing and management researchers
(Baumgartner and Steenkamp 2001; Brannick et al. 2010;
Cote and Buckley 1987, 1988; MacKenzie and Podsakoff
2012; Podsakoff et al. 2003, 2012; Richardson et al. 2009;

Spector 1987, 2006; Williams and Brown 1994; Williams
et al. 1989). Broadly defined, method variance refers to any
systematic, non-substantive influence on measures of substan-
tive constructs that is due to the method of measurement used.
Although method effects can occur for all kinds of measure-
ment, we follow the literature by limiting our discussion to
single and multi-item self-report measures of constructs.
Method variance is one source of correlational error, which
occurs “when individual responses vary consistently to differ-
ent degrees over and above true differences in the construct
being measured; that is, it is a result of different individuals
responding in consistently different ways over and above true
differences in the construct” (Viswanathan 2005, p. 108).
Common method variance (CMV) is a specific type of method
variance pertaining to situations where multiple measures of the
same construct or different constructs share the same measure-
ment method. Podsakoff et al. (2003) (see also Baumgartner
and Weijters 2019, Section 4.1.2) distinguish three sets of fac-
tors that may lead to method effects: (a) characteristics of the
respondent providing the self-reports (called common rater ef-
fects by Podsakoff et al.), particularly response styles such as
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acquiescent, extreme, and midpoint responding and response
sets such as social desirability (Baumgartner and Steenkamp
2001; Steenkamp et al. 2010); (b) properties of the items used
to assess a construct (called item characteristic effects in
Podsakoff et al.), such as the keying direction of the items or
the response scale used to collect the ratings (Baumgartner et al.
2018; Weijters et al. 2010); and (c) general features of the ques-
tionnaire and the questionnaire context influencing the measure-
ments (called item andmeasurement context effects in Podsakoff
et al.), such as the positioning of items in the questionnaire or the
mode of data collection (Weijters et al. 2008, 2009).1 To illus-
trate, imagine a survey in which individual differences in extra-
version are measured by asking respondents to report whether
they are “talkative.” Any systematic measurement influence on
the response to the “talkative” item, other than people’s standing
on the trait of extraversion, such as their preference for a certain
response category (“agree” or “strongly agree”) or the position of
the question in the questionnaire (e.g., beginning, middle, end),
would be a potential method effect. CMV is problematic because
it induces dependencies between items independently of the sub-
stance of the items (as noted by Viswanathan 2005). This is in
contrast to random errors ofmeasurement, which can be assumed
to be independent across differentmeasures of the same construct
or measures of different constructs. As a consequence of CMV,
items designed to measure the same trait (or related traits) share
variance not only because the underlying trait is the same (or the
traits are related), but also because the measurement method is
the same (or the methods are similar).

Although the problem of CMV has been debated for decades,
important unresolved issues remain, two of which are addressed
in this article. A first question is whether CMV distorts empirical
findings at all. Conventional wisdom holds that CMV is
pervasive and can seriously bias research findings. Podsakoff
et al. (2012) provide a review of the evidence. However, some
researchers view the damaging effects of CMV as an urban leg-
end. For example, in an early paper on self-reported affect and
perceptions at work, Spector (1987) surmised that “the problem
[of CMV] may in fact be mythical” (p. 442). More recently,

Lance et al. (2010) concluded that “method variance occurs fre-
quently, but when substantive measurement facets are excluded
as allegedmethods, commonmethod variance does not appear to
be as robust and threatening as many seem to think” (p. 448).
One problem is that prior conclusions about the effects of CMV
often rely on illustrative examples, Monte Carlo simulations as-
suming particular parameter values, or meta-analyses of data sets
(sometimes limited in scope) for which methods effects can be
estimated. In contrast, this article demonstrates that under simpli-
fying but realistic assumptions, it is straightforward to derive the
effect of different levels of CMV on observed correlations ana-
lytically, while taking into account other relevant determinants of
observed correlations besides CMV. This allows us to demon-
strate the conditions under which CMV will distort observed
correlations relative to the “true” trait correlations as well as the
severity of the distortion.

A second question is how to detect the presence of CMV and
the severity of potential negative consequences in one’s own
research. Podsakoff et al. (2003) and Podsakoff et al. (2012)
catalogued and critically evaluated the available approaches.
Arguably the most commonly used, but also the most deficient,
method is the so-called Harman one-factor test. For example,
based on evidence from a related field, 65% of 145 articles pub-
lished between 2011 and 2015 in leading Information Systems
journals relied on the test to detect common method bias
(Aguirre-Urreta and Hu 2019). Despite forceful conceptual cri-
tiques of the Harman one-factor test (e.g., Hulland et al. 2018,
Appendix), some researchers continue to recommend the test and
it remains popular. As a case in point, Fuller et al. (2016, p. 3197)
acknowledge that “Harman’s one-factor test cannot consistently
produce an accurate conclusion about biasing levels of CMV in
data”. Nonetheless, these authors proceed to conclude that “this
study indicates that the most commonly used post-hoc approach
to managing CMV—Harman’s one-factor test—can detect bias-
ing levels of CMV under conditions commonly found in survey-
basedmarketing research” (idem, p. 3197). Our second goal is to
critically analyze and rebut such claims and to demonstrate that
the Harman one-factor test (a) is invalid and (b) should not be
used to detect the presence of CMV in one’s data.

We should note that the purpose of this article is not to
provide a catalogue of methods to prevent, detect, or cope
with CMV, as several prior studies across disciplines have
already done so (e.g., Podsakoff et al. 2003, 2012) and a full
treatment of these issues would require another article. Our
aim is moremodest, namely, to show that two common beliefs
related to CMV are incorrect and potentially dangerous.

Does CMV distort observed correlations
between measures of constructs?

This section reviews the available evidence on the effects of
CMV on observed correlations and demonstrates that the

1 There are differences of opinion in the literature about what counts as a
method (Podsakoff et al. 2012). Many researchers subscribe to the broad
definition of method used here. However, Lance et al. (2010) argue that meth-
od should essentially be restricted to different measurement instruments (e.g.,
different items to measure the Big Five personality traits) and different re-
sponse formats (e.g., Likert, Thurstone, and semantic differential scales) for
measuring the same trait. They specifically claim that raters and measurement
occasions should not be considered as methods because in some areas (e.g.,
multisource performance ratings) these have been shown to constitute substan-
tive measurement facets, not method facets. It is undeniable that method fac-
tors may sometimes have substantive implications. For instance, social desir-
ability might correlate with, say, true yielding to persuasive communications
and self-report measures used to assess yielding. However, it is incorrect to
reverse the argument and claim that if a variable could, under certain condi-
tions, function as a substantive construct, it cannot be a method factor in a
different situation. The fact that an umbrella could perhaps be used as a hockey
stick does not imply that it should not be used to protect oneself against the
rain.
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biasing effect of CMV depends on the sign and size of the trait
correlation and the degree of measure unreliability, in addition
to the sign and size of the method loadings. It shows that for
commonly encountered combinations of these factors the bias
due to CMV can be substantial.

Prior research on the biasing effects of shared
method variance

Podsakoff et al. (2012) reviewed different streams of literature
investigating the severity of method bias in empirical studies
in marketing and management. They consider meta-analyses
of prior multitrait-multimethod (MTMM) investigations and
studies assessing the effects of specific method biases on
relationships between constructs. MTMM studies make it
possible to decompose the total variance in observed
measures into trait, method, and unique factor variance and
to examine the effect of method variance on observed
correlations relative to trait correlations. Podsakoff et al.
(2012) show, among other things, that across five meta-
analytic studies involving between 11 and 70 MTMM matri-
ces, the variance in individual items attributable to various
method factors ranged from 18 to 32%, and the estimated trait
correlations were inflated between 38 and 92% by CMV.
These figures suggest that the amount of CMV in observed
measures is substantial and that CMV can seriously distort
estimates of trait correlations based on observed correlations.

Despite such troubling findings, Lance et al. (2010) argue
that certain method factors may actually be substantive factors
and that the attenuation of observed correlations due to
unreliability of measurement may offset the inflation of
observed correlations due to CMV. This reasoning implies
that CMV may not seriously distort observed correlations,
particularly when researchers do not take into account
measurement error. In contrast, Fuller et al. (2016) acknowl-
edge that CMV bias might be substantial, but they claim that
“no researcher can draw accurate conclusions regarding the
accuracy of CMV rates in real data” (p. 3194). Therefore, they
resort to simulations to determine when CMVwill bias estimat-
ed correlations. We agree that the true data generating process
cannot be known with real data but disagree that the logical
implication is to instead rely on data simulations. Our analytical
results will provide more detailed and novel insights into the
biasing effects of CMV than is possible with simulations.

Consider the model in Fig. 1, which has two observed
measures x1 and x2 that are each a function of a substantive
factor (F1 and F2), a method factor (M1 and M2), and a unique
factor (δ1 and δ2). In equation form:

x1 ¼ λ1F1 þ μ1M 1 þ δ1 ð1Þ
x2 ¼ λ2F2 þ μ2M 2 þ δ2; ð2Þ
where λ1 and λ2 are the trait (substantive) loadings and μ1 and

μ2 the method loadings. Let the variances of Fi andMi be one
and assume that Mi is uncorrelated with Fi. Furthermore, as-
sume that the unique factors δi are uncorrelated with each
other and with Fi and Mi.

The covariance between the observed variables x1 and x2
(i.e., the observed covariance) is then:

Cov x1; x2ð Þ ¼ λ1λ2φ21 þ μ1μ2ψ21; ð3Þ
where φ21 is the trait correlation between F1 and F2 (i.e., the
true correlation between the two constructs that researchers
are interested in) and ψ21 is the correlation between the meth-
od factors M1 and M2 (i.e., the method correlation). Similarly,
the total variance in each observed variable (or measure) is:

Var xið Þ ¼ λ2
i þ μ2

i þ θii; ð4Þ

where θii is the variance of δi. The proportions of trait, method,
and unique factor variance in each observed measure are, re-
spectively,

λ2
i

λ2
i þ μ2

i þ θii
; ð5Þ

Fig. 1 Model of two observed variables that are each a function of a
substantive (trait) factor, a method factor, and a unique factor. Note:
The common method factor model is a special case of this model, which
is obtained when the method correlation (ψ) equals 1 (unity)
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μ2
i

λ2
i þ μ2

i þ θii
; ð6Þ

and

θii
λ2
i þ μ2

i þ θii
: ð7Þ

When the observed variables are standardized (which we

assume from now on), the denominator equals 1, and λ2
i , μ

2
i ,

and θii indicate the proportion of the total variance in each
observed measure that is due to, respectively, the substantive
construct (trait variance), the method factor (method vari-
ance), and unique influences on xi.

Cote and Buckley (1988, pp. 580–581) already presented
Eq. (3) and noted the following: “As can be seen from Eq. 1
[the well-known Spearman correction for attenuation formula]
and 3 [same as Eq. (3) here], random error variance attenuates
the observed bivariate correlation between measures.
However, method effects can either attenuate estimates of
the relationship, inflate estimates of the relationship, or have
no effect depending on the correlation between the methods.”
Although Cote and Buckley (1988), as well as other experts
(e.g., Podsakoff et al. 2003, 2012), have long recognized that
method bias can either inflate, deflate, or have no effect on
observed correlations, many researchers are still under the
impression that method effects generally increase observed
correlations or that the net effect is zero or small because
measurement unreliability offsets the upward bias due to
CMV (e.g., Fuller et al. 2016).

Cote and Buckley (1988, pp. 580–581) provide an empir-
ical example to illustrate the effects of method variance, which
we repeat here:

Suppose that measures of two constructs both contain
60 percent trait variance, 20 percent method variance,
20 percent random error, and the true correlation be-
tween the traits is 0.5. Further, suppose that the true
correlation between the methods is either 0.2, 0.375, or
0.8. From Eq. 3, the corresponding observed correlation
between two measures would be 0.34, 0.375, and 0.46,
respectively. If the method effects were removed, the
measures would contain 75 percent trait variance and
25 percent random error. Under these measurement con-
ditions, the observed correlation between the measures
would be 0.375 (using Eq. 1). The example illustrates
that method effects attenuate the relationship between
twomeasures when the correlation between the methods
is lower than the observed correlation between the mea-
sures withmethod effects removed.Withmethod effects
removed, the observed relationship will be unaffected
when the correlation between the methods is the same
as the observed correlation between the measures.

Lastly, method effects will inflate the observed relation-
ship when the correlation between the methods is higher
than the observed correlation between themeasures with
method effects removed. Therefore, the degree to which
two measures are correlated depends not only on the
traits being measured, but also on the size of the method
variance, random error variance, and the correlation be-
tween the methods used to measure the constructs.

Cote and Buckley (1988) focus on the effects of shared meth-
od variance on observed correlations attenuated by measure-
ment error, but researchers are mostly interested in the trait
correlation (.5 in their example) rather than the attenuated trait
correlation (i.e., observed correlation). Note that the trait cor-
relation is underestimated in all cases considered by the au-
thors. Cote and Buckley (1988) proceed to use Eq. (3) to
simulate observed correlations between two measures assum-
ing (a) trait correlations varying from 0 to 1 in .05 increments
and (b) average trait, method and random error variances as
well as average method correlations derived from a meta-
analysis by Cote and Buckley (1987) of 70 MTMM studies
across the social sciences (both overall and separately for per-
sonality and attitude measures). The authors’ simulations
show that for trait correlations of .3 or higher, observed cor-
relations underestimate the true correlation, whereas for trait
correlations of .2 or lower, observed correlations overestimate
true correlations.

Lance et al. (2010) expand on Cote and Buckley (1988)
and conclude, based on theoretical arguments and an anal-
ysis of 18 MTMM matrices, that “there is a kernel of truth
to the urban legend that common method effects inflate
monomethod correlations but it is a myth that monomethod
correlations are larger than correlations among the con-
structs themselves, and this is because of the offsetting
and attenuating effects of measurement error. Thus,
monomethod correlations are generally not inflated as
compared to their true score counterparts” (p. 448). We
believe that it is premature and potentially dangerous to
conclude, as Lance et al. (2010) do—based on a small
sample of studies where this was the case—that the infla-
tionary effect of shared method variance will routinely be
offset by the deflationary effect of measurement error.
Moreover, it seems ironic to rely on one data deficiency
(i.e., measurement error) to offset another data deficiency
(i.e., method effects). Instead, it is important to understand
when and to what extent shared method variance will bias
research findings, as we do below.

When and how will shared method variance bias
research findings?

Cote and Buckley (1988) noted that method effects can
inflate or deflate observed correlations, or leave observed
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correlations unchanged, depending on the size of the
method variance, random error, and the correlation be-
tween the methods, and they presented illustrative exam-
ples to demonstrate this point. Using Eq. (3), more spe-
cific conclusions about the biasing effects of shared meth-
od variance can be derived, and the results of Cote and
Buckley (1988) can be extended by considering the sign
and size of the trait and method correlations as well as the
sign and size of the method loadings.2

In Eq. (3), we can assume without loss of generality that
both trait loadings (λ1, λ2) are nonnegative because the ob-
served measures x1 and x2 can always be recoded such that a
higher score on x1 and x2 indicates a higher standing on the
underlying constructs. However, the correlation of the two
traits (φ21) could be positive or negative (or zero). We will
distinguish several qualitatively distinct situations of bias due
tomethod effects, depending on the sign of the second term on
the right-hand side of Eq. (3). Consider first the case where
μ1μ2ψ21 > 0. This occurs when (a) the correlation between the
methods is positive and the method loadings are either both
positive or both negative or (b) the method correlation is neg-
ative and one method loading is positive while the other is
negative.

1. If the trait correlation is positive, method effects will al-
ways inflate observed correlations relative to λ1λ2φ21

(where λ1λ2φ21 is the attenuated trait correlation in the
absence of method effects). That is, the observed correla-
tion will bemore positive than it would be if there were no
method effects.

2. If the trait correlation is negative, method effects will also
inflate the observed correlation, but in this case the ob-
served correlation will be less negative than it would be in
the absence of method effects. More specifically, when
μ1μ2ψ21 < ∣ λ1λ2φ21∣, the observed correlation will be
biased toward zero, and when μ1μ2ψ21 > ∣ λ1λ2φ21∣, the
observed correlation will have the wrong sign (i.e., it will
be positive rather than negative).

Consider next the case where μ1μ2ψ21 < 0. This occurs
when (a) the correlation between the methods is negative
and the method loadings are either both positive or both neg-
ative or (b) the method correlation is positive and one method
loading is positive while the other is negative.

1. If the trait correlation is negative, method effects will al-
ways deflate the observed correlations relative to
λ1λ2φ21. That is, the observed correlation will be more
negative than it would be if there were no method effects.

2. If the trait correlation is positive, method effects will also
deflate the observed correlation, but in this case the

observed correlation will be less positive than it would be
in the absence of method effects. More specifically, when
∣μ1μ2ψ21∣ < λ1λ2φ21, the observed correlation will be bi-
ased toward zero, and when ∣μ1μ2ψ21∣ > λ1λ2φ21, the
observed correlation will have the wrong sign (i.e., it will
be negative rather than positive).

So far, we have assumed that the two measurement
methods are correlated but not identical. Shared method var-
iance becomes common method variance (CMV) when the
method correlation equals one, that is, when a single common
method factor contributes to the correlation between the ob-
served measures. In this case, the distortion of observed cor-
relations depends only on the sign and size of the method
loadings (i.e., since ψ21 = 1, μ1μ2ψ21 = μ1μ2). If both method
loadings are positive or both method loadings are negative,
method effects will inflate the observed correlation (i.e., make
it less negative or more positive) relative to the attenuated trait
correlation in the absence of method effects. If one method
loading is positive and the other negative, the observed corre-
lation will be deflated (i.e., more negative or less positive than
the attenuated trait correlation). The qualitatively distinct sit-
uations discussed earlier apply with the method correlation set
to one (i.e., ψ21 = 1).

The effects of common method variance when the
measures are equally reliable and the method
loadings are equal in absolute magnitude

Equation (3) shows that the correlation between two observed
measures depends on six variables: the size of the two trait
loadings (λ1, λ2), which we assume to be positive without loss
of generality; the sign and size of the two method loadings
(μ1, μ2); and the sign and size of the trait (φ21) and method
(ψ21) correlations. This makes it challenging to evaluate the
magnitude of method effects and discern possible interactions
between the influencing factors. However, we can gain addi-
tional insights into method effects with some simplifying but
reasonable assumptions.

First, assume that the unique factor variance θii is equal to

random error variance so that 1−θiið Þ ¼ λ2
i þ μ2

i

� � ¼ ρxixi is

the (individual-item) reliability of xi. Substituting λ
2
i ¼ ρxixi−μ

2
i

into equation (32) yields:

Cov x1; x2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρx1x1−μ

2
1

� �q� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρx2x2−μ

2
2

� �q� �
φ21 þ μ1μ2ψ21: ð8Þ

Note that when x1 and x2 are standardized, Cov(x1, x2) be-
comes the correlation between the observed variables x1 and
x2 (i.e., the observed correlation).

Second, if we assume that x1 and x2 are equally reliable and
the method loadings are equal in absolute magnitude although
the signs might differ ( i .e. , ρx1x1 ¼ ρx2x2 ¼ ρxx, and2 We thank the reviewers for nudging us to consider these extensions.
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∣μ1 ∣ = ∣ μ2 ∣ = μ), Eq. (8) simplifies to either

Cov x1; x2ð Þ ¼ ρxx−μ
2

� �
φ21 þ μ2ψ21 ð9Þ

when μ1 and μ2 are both positive or both negative, or

Cov x1; x2ð Þ ¼ ρxx−μ
2

� �
φ21−μ

2ψ21; ð10Þ

when μ1 and μ2 differ in sign. We can then rewrite Eqs. (9)
and (10) as follows:

Cov x1; x2ð Þ ¼ ρxxφ21 þ μ2 ψ21−φ21ð Þ; ð11Þ
when μ1 and μ2 are both positive or both negative, and

Cov x1; x2ð Þ ¼ ρxxφ21−μ
2 ψ21 þ φ21ð Þ: ð12Þ

when μ1 and μ2 differ in sign.
Third and finally, assume that the two observed measures

are based on the same method of measurement, which implies
that the two methods are perfectly positively correlated (i.e.,
ψ21 = 1). We then get

Cov x1; x2ð Þ ¼ ρxxφ21 þ μ2 1−φ21ð Þ ð13Þ
when μ1 and μ2 are both positive or both negative, and

Cov x1; x2ð Þ ¼ ρxxφ21−μ
2 1þ φ21ð Þ ð14Þ

when μ1 and μ2 differ in sign.
The first term on the right-hand side of Eqs. (13) and (14)

indicates the attenuation of the trait correlation by unreliability
of measurement (in the special case where both measures are
equally (un)reliable). In the bivariate case, observed correla-
tions (whether positive or negative) are increasingly biased
toward zero as random measurement error (unreliability) gets
larger.3 The second term on the right-hand side is the contri-
bution of common method variance to the observed
correlation.

Consider Eq. (13) first, which holds when μ1 and μ2 are
both positive or both negative.It is apparent that unless the two
substantive (trait) factors lack discriminant validity (i.e., when
φ21 = 1 so that (1 −φ21) = 0), the second term will always be
positive (regardless of whether the trait correlation is positive
or negative) and will therefore increase the observed correla-
tion (i.e., make it more positive or less negative relative to the
attenuated trait correlation). In particular, using Eqs. (13) and
(14), we can distinguish the following cases:

1. If the trait correlation is positive (φ21 > 0), CMV will al-
ways bias the observed correlation upward (i.e., make it
more positive).

2. If the trait correlation is negative (φ21 < 0), CMV will:

a. Bias the observed correlation toward zero when the
CMV effect is smaller than the absolute magnitude of
the attenuated trait correlation (i.e., when μ2(1 −φ21)
< ∣ ρxxφ21∣).

b. Reverse the sign of the observed correlation relative
to the trait correlation when the CMV effect is larger
than the absolute magnitude of the attenuated trait
correlation (i.e., when μ2(1 −φ21) > ∣ ρxxφ21∣).

It is worth noting that when the trait correlation is positive,
(1 −φ21) is between 0 and 1, whereas when the trait correla-
tion is negative, (1 −φ21) is greater than one. Therefore, the
contribution of method effects to the observed correlation, that
is, μ2(1 − φ21), is larger for negative than for positive trait
correlations. Furthermore, when the trait correlation is posi-
tive, attenuation due to unreliability biases the observed cor-
relation toward zero (i.e., makes it less positive), whereas
CMV biases the observed correlation away from zero (i.e.,
makes it more positive). Thus, unreliability and CMV affect
observed correlations in opposite directions and the two ef-
fects may balance each other out if they happen to be the equal
in magnitude.

However, the net effect of CMV and measurement unreli-
ability is very different when the trait correlation is negative.
In that case, attenuation due to unreliability biases the ob-
served correlation toward zero (i.e., makes it less negative),
and CMV also makes the observed correlation less negative or
even positive. Overall, this means that CMV will distort ob-
served correlations more strongly when the trait correlation is
negative rather than positive.

Consider Eq. (14) next, which holds when the absolute
values of μ1 and μ2 are equal, but one method loading is
positive and the other is negative. When a method of measure-
ment has opposite effects on two observed measures, method
effects will generally deflate observed correlations (i.e., make
them less positive or more negative relative to the attenuated
trait correlation). In particular, the following cases can be
distinguished:

1. If the trait correlation is positive (φ21 > 0), CMV will:

a. Bias the observed correlation toward zero when the
CMV effect is smaller than the attenuated trait corre-
lation (i.e., when μ2(1 −φ21) < ρxxφ21).

b. Reverse the sign of the observed correlation rela-
tive to the trait correlation when the CMV effect is
larger than the attenuated trait correlation (i.e.,
when μ2(1 − φ21) > ρxxφ21).

2. If the trait correlation is negative (φ21 < 0), CMV will
always bias the observed correlation downward (i.e.,
make it more negative).

3 In the multivariate case, measurement error does not necessarily attenuate the
partial correlations.
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The situation described in Eq. (13) (i.e., the method load-
ings have the same sign) seems more likely than the situation
described in Eq. (14) (i.e., the method loadings have different
signs).4 To appreciate the implications of Eq. (13), Fig. 2
graphs the effects of direction and size of the trait
(substantive) correlation, amount of CMV, and degree of mea-
sure unreliability on the observed correlation between x1 and
x2 (when both method loadings are nonnegative). Trait corre-
lation was varied at 8 levels (−.7, −.5, −.3, −.1, .1, .3, .5 and .7)
and is shown on the x-axis. CMV was varied at 7 levels rang-
ing from 0 to 60% in 10% increments and is depicted as the
grouping variable. There are separate panels for the four levels
of measure reliability (.6, .7, .8 and .9). The findings in the
figures can be readily extrapolated to additional levels of the
design factors.

An ANOVA of the observed correlations on the size of the
trait (substantive) correlation, amount of CMV, and measure
(un)reliability, and all interactions, reveals large main effects
of trait correlation and CMV and two-way interactions of trait
correlation with CMV and trait correlation with reliability.5

The two-way interaction of trait correlation with CMV is
clearly visible in Fig. 2. The interaction between trait correla-
tion and reliability is less pronounced.

Figure 2 reveals the following. First, although an increase
in CMV always increases the observed correlation, the mag-
nitude of the increase depends on the sign and size of the trait
correlation. The effect is strongest for the most negative trait
correlation and becomes successively smaller as the trait cor-
relation first becomes less negative and then more positive.
This pattern holds regardless of the level of measure unreli-
ability. Second, the attenuating effect of measure unreliability
is stronger for more extreme positive or negative trait correla-
tions (particularly in the 0% CMV condition).

For negative trait correlations, measurement unreliability
biases the observed correlations toward zero and CMV am-
plifies the bias. In fact, since the latter effect is stronger, the
observed correlations actually become positive (and thus have
the wrong sign) even for modest amounts of CMV. For pos-
itive trait correlations, measurement unreliability biases the
observed correlations toward zero, while CMV has the oppo-
site effect. However, the attenuation effect is more pro-
nounced for stronger trait correlations, whereas the

inflationary effect due to CMV is more pronounced for weak-
er trait correlations.

Under which conditions will observed correlations deviate
significantly from the true trait correlation? This question can
be answered by constructing a confidence interval around the
observed correlation and determining whether the confidence
interval contains the true correlation (for a given level of mea-
sure unreliability, size of the trait correlation, and amount of
CMV). The width of the confidence interval depends on the
chosen confidence level (95% in the present case) and the
sample size. For purposes of illustration, Figs. 3 and 4 show
the confidence intervals for sample sizes of 100 (relatively
small) and 500 (relatively large). The figures display the ob-
served correlation for different levels of CMV and measure
reliability, with separate graphs for the four negative trait cor-
relations (Figs. 3a and 4a) and the four positive trait correla-
tions (Figs. 3b and 4b).We used Fisher’s r-to-z transformation
to construct the confidence intervals.

Figures 3a and 4a show that when the trait correlation is
negative, even relatively modest amounts of CMV (i.e., 10%)
lead to an upward bias in observed correlations: the observed
correlation is less negative than it should be, and the confi-
dence interval around the observed correlation generally does
not include the true trait correlation. At higher levels of CMV
the bias can be substantial and observed correlations can have
the wrong sign. For example, consider the situation in which a
measure contains 30% method variance. In this case, the ob-
served correlation will be significantly positive (at a sample
size of 500) for a reliability of .6 even though the true trait
correlation is actually −.7; the observed correlation will be
significantly positive for reliabilities of .6 and .7 when the true
trait correlation is actually −.5; and the observed correlation
will always be significantly positive (regardless of measure-
ment reliability) when the true trait correlation is −.3 or − .10.
The only cases in which observed correlations will not deviate
significantly from the true trait correlation occur at the smaller
sample size of 100 when CMV is only 10% and the negative
trait correlation is relatively small (i.e., −.3 or − .1).

Figures 3b and 4b show that when the trait correlation is
positive, both upward and downward bias in observed corre-
lations are possible. First, at the smaller sample size of 100,
downward bias occurs primarily when the trait correlation is
high (.7) and when measure reliability is low (i.e., .6 or .7). In
contrast, there is an upward bias in observed correlations when
the trait correlation is low (i.e., ≤ .3) and CMV is at least 30%.

Second, at the higher sample size of 500, observed corre-
lations exhibit a downward bias primarily when trait correla-
tions are relatively high (i.e., .5 or .7) and CMV is low (0 or
10%), although underestimation can occur for CMV as high
as 60% when the trait correlation is high (i.e., .7) and measure
reliability is low (i.e., .6). In contrast, upward bias occurs for
even modest levels of CMV (i.e., ≥ 20%) when the trait cor-
relation is low (i.e., .1), regardless of measure unreliability.

4 Lance et al. (2010) re-analyzed 18 MTMM matrices and found that the
average method loading was .427 and the average method correlation was
.520. These findings support our contention that positive method loadings
are more common thanmixed positive and negative method loadings (or, more
generally, that μ1μ2ψ21 > 0 is more common than μ1μ2ψ21 < 0).
5 Since there is only one observation per cell, it is not possible to report
statistical tests. However, the sums of squares of reliability, the interaction of
reliability with CMV, and the triple interaction are zero. The percentages of the
total variation in observed correlations accounted for by the remaining design
factors (in decreasing order of importance) are as follows: trait correlation 45
percent; CMV 43 percent; trait correlation by CMV 9 percent; and trait corre-
lation by reliability 3 percent.
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However, at higher trait correlations (i.e., ≥ .5), overestimation
is less common, and CMV has to be substantial (i.e., ≥ 50%)
and reliability has to be high (i.e., ≥ .8) in order for observed
correlations to be larger than true trait correlations.

What are the main implications of the foregoing analysis,
focusing again on the common situation in which the method
loadings are both positive or both negative? First, the upward
bias due to CMV and the downward bias due to measure
unreliability do not cancel out for negative trait correlations.
In fact, under most scenarios, common method variance
biases the observed correlations and this bias can be substan-
tial. That is, even though the trait correlation is negative, the
observed correlation may be strongly positive (a sign
reversal).

Second, the upward bias in correlations due to CMV and
the downward bias due to measurement unreliability do not
always cancel each other out for positive trait correlations,
even though observed correlations are biased in opposite di-
rections by CMV and measure unreliability. In fact, depend-
ing on the magnitude of the trait correlation, level of reliabil-
ity, and amount of CMV, observed correlations can under- or
overestimate trait correlations.

Third, overestimation of trait correlations, which is primar-
ily due to CMV, is more severe at lower levels of trait corre-
lation (.3 or lower), and it occurs for typical levels of CMV
that have been found in prior meta-analyses (between 20 and
30%). However, underestimation of trait correlations, which is
primarily due to unreliability of measurement, is more severe
at higher levels of trait correlations.

Taken together, our analysis demonstrates that CMV can
cause a marked bias in the size and even the sign of observed
correlations. Researchers should not assume or hope that

CMV and measurement unreliability will cancel each other
out: a negative observed correlation could result from a larger
or lower negative trait correlation, whereas a positive ob-
served correlation could result from a larger or lower positive
trait correlation or even a negative trait correlation. These
results do not lend support to the optimistic belief that the
effects of CMV tend to be small or that they will be offset
by the effects of (untreated) measurement unreliability (Fuller
et al. 2016; Lance et al. 2010). Nor do these results lend
support to the (erroneous) belief that CMV can only inflate
observed correlations as assumed by some widely used
methods that purport to correct for CMV, such as the marker
variable approach (Lindell and Whitney 2001).

Is Harman’s one-factor test useful
for detecting the presence of CMV?

This section demonstrates that the Harman one-factor “test” is
not useful for detecting the presence of common method var-
iance because it has both low sensitivity and low specificity
(i.e., it is likely to produce both false negatives and false pos-
itives). Despite its known fallibility as a test of commonmeth-
od bias (e.g., Hulland et al. 2018), the Harman test survives,
perhaps because it is so easy to implement and usually yields
the result that researchers desire, namely that there is no evi-
dence of CMV. The idea of the test is that if CMV unduly
contaminates data, the first (unrotated) factor in either a prin-
cipal component analysis (PCA) or an exploratory factor anal-
ysis (EFA) will account for a “substantial” portion of the var-
iance in the items measuring the constructs of interest. This
criterion is vague, but in practice researchers often assume that

Fig. 2 Observed correlation as a
function of trait correlation and
CMV (for each level of measure
reliability). Note: Grey areas
indicate observed correlations for
which the sign is the same as for
the trait correlation
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there is evidence of CMV if a single eigenvalue is greater than
one or if the first (unrotated) factor accounts for 50% or more
of the variance in the items (e.g., Cohen and Ehrlich 2019, p.
1432; Fuller et al. 2016). As a case in point, Dai et al. (2020)
compared three multi-item trust scales with 25, 20, and 18
items, respectively, and concluded that because 18 eigen-
values exceeded 1 and the factor with the largest eigenvalue
accounted for only 11% of the variance in the data, there was
no evidence of common method bias.

The Harman one-factor test is liable to two types of error.
On the one hand, the Harman test may fail to detect CMV
when it is present (a false negative error). There are two
sources for this lack of sensitivity of the Harman test:

measurement unreliability and the dependence of the test on
the number of observed variables analyzed. First, the Harman
test is applied to the correlation matrix of the observed vari-
ables, and since observed bivariate correlations are attenuated
by measure unreliability, the test is affected by a source of
variance (i.e., random measurement error) that is not directly
related to method variance (i.e., systematic measurement er-
ror). Importantly, unreliability makes it less likely that a sin-
gle, dominant factor will emerge in a principal component or
exploratory factor analysis. Second, for a given level of cor-
relation between the observed measures, the likelihood that
the first factor will account for more than 50% of the total
variance in the data goes down as the number of variables

Fig. 3 a Confidence intervals
around correlation between two
observed variables for different
levels of measure unreliability,
negative trait correlation, and
CMV (sample size of 100). Note:
The horizontal lines in these
graphs show the true trait
correlation bConfidence intervals
around correlation between two
observed variables for different
levels of measure unreliability,
positive trait correlation, and
CMV (sample size of 100). Note:
The horizontal lines in these
graphs show the true trait
correlation
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increases. Note that Dai et al. (2020) applied the Harman one-
factor test to three trust measures containing a total of 63
items.

On the other hand, the Harman test may suggest the pres-
ence of CMV when none exists (a false positive error). The
test lacks specificity because it incorrectly assumes that a high
degree of communality among the observed variables neces-
sarily reflects common method variance. Particularly when
the underlying traits are positively correlated, such as when
the Harman one-factor test is applied to three multi-item trust
measures, the shared variance among the measures of these
traits may be due to substantive overlap between the underly-
ing traits (constructs).

Even if the first factor were to capture common method
variance, the criterion that a problem with CMV exists when
the first factor accounts for the majority of the variance in the
data is misleading. Recall that observed correlations may, on
the one hand, exhibit significant upward bias even for CMV
levels below 20% and, on the other hand, not deviate signif-
icantly from trait correlations even when CMV exceeds 50%.

Let us examine the false positive and false negative errors
of the Harman one-factor test more formally. Consider again
the model in Fig. 1 with two observed variables. The first
eigenvalue v1 of a 2 × 2 correlation matrix can be shown to
be: v1 = (1+| r ∣ ), where | r | is the absolute value of the cor-
relation between x1 and x2. Since the sum of the eigenvalues

Fig. 4 a Confidence intervals
around correlation between two
observed variables for different
levels of measure unreliability,
negative trait correlation, and
CMV (sample size of 500). Note:
The horizontal lines in these
graphs show the true trait
correlation. b Confidence
intervals around correlation
between two observed variables
for different levels of measure
unreliability, positive trait
correlation, and CMV (sample
size of 500). Note: The horizontal
lines in these graphs show the true
trait correlation
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equals the number of variables (2 in the present case), the first
eigenvalue is the single eigenvalue greater than one as long as
r ≠ 0. Moreover, because the total observed variance for two
standardized variables is also 2, the first eigenvalue accounts

for more than 50% of the variance (i.e., v1
2 ¼ 1þjrjð Þ

2 > :5 ),
unless r is zero.

If we assume that the method loadings are both positive or
both negative, we can express the first eigenvalue using Eq.
(13) as follows:

v1 ¼
1−ρxxφ21−μ

2 1−φ21ð Þ; r < 0
1; r ¼ 0

1þρxxφ21þμ2 1−φ21ð Þ; r > 0

8<
: ð15Þ

Note that even when the observed correlation is positive,
the trait correlation can be negative. Specifically, for

−μ2

ρxx−μ2ð Þ < φ21 < 0, the trait correlation will be negative while

the observed correlation is positive.6

Based on Eq. (15), we can distinguish three qualitatively
different scenarios with respect to the composition of the first
eigenvalue:

Scenario 1. All the common variance is method
variance: v1 = 1 + μ2. The magnitude of the first eigenval-
ue is solely a function of CMV. This occurs when the
observed measures contain zero trait variance (i.e., λ2 =
0 so that ρxx = μ2), in which case Eq. (15) simplifies to
1 + μ2 (r is always positive in this situation).
Scenario 2. All the common variance is trait variance:
v1 = 1 + ∣ ρxx φ21 ∣. The magnitude of the first eigenval-
ue is solely a function of the (attenuated) trait correlation
φ21 (where the degree of attenuation is indicated by ρxx).
This occurs when the observed measures contain zero
method variance (i.e., μ2 = 0).
Scenario 3. The common variance is a mixture of trait and
method variance: v1 = 1 ± ρxxφ21 ± μ

2(1 − φ21) (depend-
ing on whether r > 0 or r < 0). This is a combination of

scenarios 1 and 2 and occurs when the observedmeasures
contain both trait and method variance.

The Harman one-factor test assumes that only scenario 1 (all
common variance is method variance) can occur in practice,
which is, in general, an unjustified assumption. In fact, in many
situations where positively-correlated traits are measured with
multi-item measures, the proportion of trait variance will be
high (scenario 2) and the magnitude of the first eigenvalue will
strongly depend on shared trait variance rather than CMV.

Let us return to the study by Dai et al. (2020), who com-
pared three multi-item trust scales with 25, 20, and 18 items,
respectively. They found that 18 eigenvalues exceeded one
and that the first unrotated factor accounted for only 11% of
the variance in the data. These authors examined three multi-
item trust scales, which presumably contain a substantial
amount of shared trait variance, but the Harman one-factor
test did not indicate worrying levels of CMV. One explanation
is the large number of items used in each of the trust scales (63
items in total). As already mentioned, an increase in the num-
ber of items reduces the likelihood of observing a dominant
first factor, which can be shown with a simple example.
Assume that there are p variables with a uniform positive
correlation of r. The first eigenvalue equals v1 = 1 + (p − 1)r
in this case. For example, for three variables and r = .5, the first
eigenvalue is 2. The proportion of the total variance accounted

for by the first factor is 1þ p−1ð Þr
p , which is easily shown to

decrease as the number of observed variables increases (i.e.,

the derivative of 1þ p−1ð Þr
p with respect to p is negative). In other

words, for a given uniform correlation, the Harman one-factor
test is less likely to indicate a problem with CMV for a larger
number of observed variables. In Dai et al. (2020), a uniform,
very low correlation of .096 between all 63 items purportedly
measuring trust produced the 11% variance accounted for by the
first factor. If only two variables were available, the same small
correlation of .096 would produce a first factor that accounts for
more than 50% of the variance, as we showed previously.

In summary, the Harman one-factor test has so many con-
ceptual deficiencies that it is surprising that some researchers
(e.g., Fuller et al. 2016) continue to recommend its use, simply
because it performed reasonably well in a simulation, primar-
ily for reasons unrelated to whether or not method variance
was present (e.g., because unreliability of measurement offset
the bias caused by CMV). The implications of the present
analysis are clear: The size of the first eigenvalue is uninfor-
mative about the presence andmagnitude of CMV in data, and
researchers should not use the Harman one-factor test to check
for CMV. There is a high probability that a Harman one-factor
test flagging a problem with CMV is a false positive, and a
high probability that a Harman one-factor test indicating no
problem with CMV is a false negative.

6 The effects of μ2, ρxx, and φ21 on v1 can be evaluated by taking the partial
derivative of v1with respect to each of these terms. This analysis shows the
following. First, increasing CMV will increase the magnitude of the first ei-

genvalue when r > 0 (or φ21 >
−μ2

ρxx−μ2ð Þ), whereas it will decrease the

magnitude of the first eigenvalue when r < 0 (or φ21 <
−μ2

ρxx−μ2ð Þ). A
positive correlation increases the communality of the items, a negative
correlation decreases it. Second, increasing unreliability of measure-

ment will decrease the magnitude of the first eigenvalue when φ21

< −μ2

ρxx−μ2ð Þ or φ21 > 0, whereas it will increase the magnitude of the first

eigenvalue when −μ2

ρxx−μ2ð Þ < φ21 < 0. Third, an increase in the trait
correlation (i.e., a less negative or more positive trait correlation) will
increase the magnitude of the first eigenvalue when r > 0 (or

φ21 >
−μ2

ρxx−μ2ð Þ), whereas it will decrease the magnitude of the first ei-

genvalue when r < 0 (or φ21 <
−μ2

ρxx−μ2ð Þ).
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Discussion and conclusion

Some scholars (including reviewers and journal editors) seem
to assume that data based on the samemethod of measurement
(including data collected from the same source) are necessar-
ily and possibly fatally distorted by commonmethod variance.
Our analytic results do not support this position. However, our
analytic results also reject the opposite position, namely, that
the presence of common method variance in empirical data
and its harmful effects on research conclusions are urban leg-
ends or myths.

When a method factor influences two observed variables in
the same direction (i.e., μ1 and μ2 are both positive or μ1 and μ2
are both negative), common method variance will always in-
flate observed correlations relative to the attenuated trait corre-
lation in the absence of method effects (i.e., observed correla-
tions will be more positive or less negative). However, the
magnitude of the inflationary effect depends on other factors,
such as the sign and size of the trait correlation. As we have
shown, the upward bias caused by CMV is strongest for high
negative trait correlations and weakest for high positive trait
correlations. In addition, unreliability of measurement can ex-
acerbate or mitigate the inflationary effect due to CMV. In
general, greater unreliability will make negative trait correla-
tions less negative and positive trait correlations less positive.
However, whereas for positive trait correlations, CMV and un-
reliability have countervailing effects, for negative trait correla-
tions CMV and unreliability will reinforce each other’s effect
by making observed correlations less negative and maybe even
positive. While errors-of-size are already worrisome enough,
errors-of-sign could completely reverse policy evaluations and
decisions based on the observed correlations between traits ob-
tained from survey research.

It is possible that a method factor has opposite effects on
two observed measures. For example, the tendency to respond
in a socially desirable fashion may bias responses upward on
one measure and downward on another. If this is the case,
method effects will always deflate observed correlations rela-
tive to the attenuated correlation in the absence of method
effects. When the trait correlation is negative, the observed
correlation will be even more negative than it would be if
method effects were absent; if the trait correlation is positive,
method effects will bias the observed correlation toward zero
and may even result in the observed correlation having the
wrong sign (i.e., the observed correlation is negative when
the trait correlation is actually positive).

Some authors (e.g., Fuller et al. 2016; Lance et al. 2010) have
argued that because of the countervailing effects of CMV and
measure unreliability, which in some cases neutralize each other,
CMVdoes not have a net biasing effect on observed correlations.
This might be comforting to researchers and may lull them into
ignoring the potential bias due to common method variance. We
believe that this feeling of comfort is misguided for several

reasons. First andmost importantly, when the effects of amethod
factor on two observed measures is directionally the same, the
opposing effects of CMV and unreliability are restricted to pos-
itive trait correlations, a point which prior research has failed to
recognize. Second, even when trait correlations are positive, re-
searchers cannot assume that because the two opposing effects
sometimes cancel out, this will always be the case. Since the
effect of CMV is greater at lower levels of (positive) trait corre-
lation and the effect of unreliability is greater at higher levels of
(positive) trait correlations, cancellation is unlikely to be the
norm. Furthermore, as seen in Figs. 3b and 4b, there are numer-
ous, commonly encountered conditions in which even a high
degree of measure unreliability does not offset the inflationary
effects of CMV. To illustrate, when reliability is only .6 and
observed correlations may be expected to be substantially atten-
uated, 20 (30) percent CMVwill yield an observed correlation of
.24 (.39) when the true correlation is only .1 (.3), an overestimate
of 140 (30) percent. Third, conclusions derived from meta-
analyses or Monte Carlo simulations, which attest to the
counterbalancing effects of CMV and measure unreliability, fail
to provide insights into the precise dynamics that give rise to
these compensating effects. Monte Carlo simulations can be ex-
tremely useful when it is hard to analytically derive relevant
results. However, in the present situation analytical derivations
are straightforward and they provide deeper insights than re-
analyses of existing data (for which the true data generating
process is unknown) andMonte Carlo simulation (which depend
on an assumed data generating process and post-hoc interpreta-
tions of the results obtained). As a case in point, our analytical
findings show that the statement of Fuller et al. (2016, p. 3196)
that “[r]esults from the simulation indicate that lower tomoderate
levels of CMV do not inflate correlations and in some cases may
deflate correlations” is inaccurate. Moderate levels of CMV can
lead to inflated observed correlations (relative to the trait correla-
tion), and CMVwill never lower correlations (unless the method
loadings differ in sign, which was not the case in their simula-
tion), although the use of unreliable measures can have a defla-
tionary (and thus compensatory) effect. Finally, previous simu-
lation studies have only considered the situation of positive trait
correlations (e.g., in the simulation by Fuller et al., all pairwise
correlations between the seven constructs were positive). This
fails to recognize that when method effects have the same sign,
the biasing effects of CMV are far more pronounced for negative
trait correlations, because (a) the CMV effect dominates the at-
tenuation effect in this case and (b) the biases caused by CMV
and measure unreliability are consistent rather than competitive.

How, then, should researchers deal with the problem of
CMV? Prior research in multiple domains has already identi-
fied various potential solutions and a full treatment of the
issues involved would require a separate article. However,
we would like to offer several recommendations. The best
approach seems to be to take preventative steps to minimize
the potential for bias when designing a study. MacKenzie and
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Podsakoff (2012) discuss three sets of factors that can lead to
method bias depending on whether the bias is due to the dif-
ficulty of responding, reduced motivation to respond accurate-
ly, or respondent satisficing (see also Viswanathan and
Kayande 2012). Based on these factors, they suggest a variety
of procedural remedies to counter the problem, which can be
very useful (see also Baumgartner and Weijters 2019). Still,
despite researchers’ best efforts, common method variance
cannot always be avoided, and even if a priori remedies are
implemented, it is beneficial to check for the presence of
CMV in data post hoc and, if necessary, control for potential
biases. Researchers should not assume that unreliability of
measurement will routinely offset the biasing effects of
CMV and that observed correlations will thus approximate
trait correlations. That would lead to the ironic recommenda-
tion that researchers who expect a substantial amount of CMV
in their data should use unreliable scales to measure their
constructs to ensure that the two effects cancel each other
out (which, at any rate, would only occur for positive trait
correlations). Instead, researchers should assess the reliability
of their measures, ascertain the extent of common method
variance (if there are reasons to believe that common method
variance is a problem), and test their substantive hypotheses
taking into account both measure unreliability and CMV.
Baumgartner and Weijters (2019) present an overview of
measurement models that take into account systematic errors
of measurement, and they provide an example data set and
code to estimate these models.

We acknowledge that it may not always be possible to
obtain a good estimate of the amount of CMV with typical
mono-method data that researchers have available. Explicit
measures of potential method effects (e.g., acquiescent re-
sponse tendencies, social desirability) may not be available,
and implicitly defined method factors, which try to infer meth-
od effects from the substantive measures, unfortunately do not
always yield accurate estimates of CMV (Richardson et al.
2009). As an alternative, we recommend that researchers per-
form a sensitivity analysis of the likely effects of systematic
measurement error. As an illustration, we will demonstrate a
sensitivity analysis using correlation estimates and construct
reliabilities for customer satisfaction, customer loyalty, and
customer social media use as reported in a recent study by
Bill et al. (2020). Our intent is not to criticize the original
findings (particularly since their focus differs), but to use ac-
tual data to illustrate the proposed sensitivity analysis. Using
Eq. (8), the trait correlation can be expressed as a function of
the observed correlation (rx1x2 ), the measure reliabilities, the
method loadings, and the method correlation as follows:

φ21 ¼ rx1x2−μ1μ2ψ21ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρx1x1−μ

2
1

� �q� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρx2x2−μ

2
2

� �q� �
ð16Þ

Based on Table 2 in Bill et al. (2020), the reliabilities of
customer satisfaction, customer loyalty, and customer social

media are .88, .72, and .78, and the correlations between sat-
isfaction and loyalty, satisfaction and social media use, and
loyalty and social media use are .63, .13, and .07, respectively
(calculated from the responses of 334 customers). Figure 5
displays the estimated trait correlation for each combination
of constructs as a function of method loadings varied orthog-
onally from −.54 to +.54 (i.e., 30% method variance) in incre-
ments of 10% (assuming the correlation between the methods,
ψ21, to be 1). In Podsakoff et al.’s (2012) meta-analytic review
the amount of CMV across studies ranged from 18 to 32%, so
the range of method variance examined in our scenarios
should be a realistic reflections of what might happen in
practice.

The graphs show that when the observed correlation is
positive and relatively large (i.e., .63), the estimated trait cor-
relation is .79 in the absence of method effects, but when
method effects are present, it could be as low as .67 and as
high as .97. Regardless of whether the method loadings are
positive or negative, the observed correlation always underes-
timates the true correlation. In contrast, when the observed
correlation is positive and relatively low (.07 or .13), the esti-
mated trait correlations in the absence of method effects are
.08 and .17, respectively. However, when method effects are
considered, the estimated trait correlation could be as high as
.70 and .96, respectively, or as low as −.44 and − .38, respec-
tively. In other words, the trait correlation could bemuchmore
positive than suggested by the observed correlation, or it could
be negative and sizable, in which case the observed correlation
is entirely misleading.

When multi-method data are unavailable, which is com-
mon in many disciplines, our proposed sensitivity analysis
helps researchers gauge the potential harm that CMV can
cause in their data. It should be noted that while we varied
the size of the method loadings orthogonally from −.54 to
+.54, domain experts may be able to impose a narrower range
of possible values. For example, it appears unlikely that social
desirability will have opposite effects on satisfaction, loyalty,
and social media use. However, since all items measuring the
three constructs in Bill et al. (2020) were measured with 7-
point strongly disagree to strongly agree scales, it is possible
that individual differences in agreement tendency across cus-
tomers contributed to the observed correlation, which would
suggest that the method loadings are positive. This means that
negative μ1 and μ2 values in Fig. 5 can be ignored. If it is
reasonable to assume that the method effects on different ob-
served measures are approximately equal, the range of possi-
ble method effects can be further reduced.

Our analysis once more demonstrates the importance of
evaluating the presence and magnitude of CMV in survey
data. However, it is hard to over-emphasize that Harman’s
one-factor test should not be used for this purpose.
Researchers cannot assume that the first factor extracted from
data necessarily represents method variance, rather than
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substantive variance. Furthermore, even if the first factor were
to represent method variance, the criterion that the first factor
should not account for the majority of the variance in observed
variables is meaningless. The variance in observed variables is
influenced by numerous factors that are unrelated to method
variance, and relying on the decision heuristic that only the
eigenvalue of the first factor should exceed one and/or that the
first factor should account for 50% or more of the variance for
method variance to be present may produce both false posi-
tives and false negatives. In brief, the Harman one-factor test
is an ineffective tool for detecting CMV; researchers should
stop using this likely misleading technique; and reviewers and
editors should insist that it not be reported in published
articles.
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