
Text Mining and Sentiment Analysis

Prof. Annamaria Bianchi
A.Y. 2024/2025

Lecture 15

14 April 2025

Outline
Preprocessing with quanteda

SA with Machine Learning: Naive Bayes

Packages: quanteda, quanteda.textmodels

Quanteda

Quanteda is an R package built to be used with textual data–perhaps from books,
Tweets, or transcripts–to both manage that data (sort, label, condense, etc.) and analyze
its contents.

Two common forms of analysis with quanteda are sentiment analysis and content
analysis.

> install.packages(‘quanteda’)

> library(quanteda)

Quanteda basics

There are three major components of a text as understood by quanteda:

• corpus: A corpus is an object within R that we create by loading our text data into R
and using the corpus() command. It is only by turning our data into a corpus format
that quanteda is able to work with and process the text we want to analyze. A corpus
holds documents separately from each other and is typically unchanged as we
conduct our analysis.

• tokens: tokens are typically each individual word in a text. This default can be
changed to be sentences or characters instead if we want.

• document-feature matrix (dfm): The dfm is the analytical unit on which we will
perform analysis. A dfm puts the documents into a matrix format. The rows are the
original texts and the columns are the features of that text (often tokens). The value
in the matrix is typically word count. Typically, this matrix contains a lot of zeros

Dataset

Let us consider Trip Advisor Hotel reviews. The reviews have been labelled and have
associated a sentiment (positive or negative). The dataset contains 3 variables:
 text

 doc_id

 sentiment

Preprocessing with quanteda

For the pre-processing part, we could move from the tidy format to the quanteda dfm
using the function tidytext::cast_dfm().

Here we start using quanteda from the beginning to see how it works.

So, we create the corpus, we tokenize, we remove stopwords, punctuation, numbers and
we also stem the words.

Stemming is very useful when implementing ML algorithms in order to reduce the
dimensionality and speed up the estimation process.

Preprocessing with quanteda

The function corpus() creates a corpus object from available sources:
• a character vector, consisting of one document per element;
• a data frame (or a tibble tbl_df), whose default document id is a variable identified by

docid_field; the text of the document is a variable identified by text_field; and other
variables are imported as document-level meta-data.

• ….

corpus(x, ...)

x a valid corpus source object
text_field the character name or numeric index of the source data.frame indicating the

variable to be read in as text, which must be a character vector. All other
variables in the data.frame will be imported as docvars. This argument is only
used for data.frame objects (including those created by readtext).

Output. A corpus class object containing the original texts, document-level variables, document-
level metadata, corpus-level metadata, and default settings for subsequent processing of the
corpus.

Preprocessing with quanteda

The function tokens() constructs a tokens object

tokens(x, what = "word", remove_punct = FALSE, remove_symbols = FALSE,

remove_numbers = FALSE, remove_url = FALSE,...)

x the input object to the tokens constructor, one of: a (uniquely) named list of characters; a
tokens object; or a corpus or character object that will be tokenized

what which tokenizer to use.
remove_punct logical; if TRUE remove all characters
remove_numbers logical; if TRUE remove tokens that consist only of numbers, but not

words that start with digits, e.g. 2day
remove_url logical; if TRUE find and eliminate URLs beginning with http(s)

Output: quanteda tokens class object, by default a serialized list of integers corresponding to a
vector of types.

Preprocessing with quanteda

The function token_remove() discards tokens from a tokens object. The most common usage
for tokens_remove will be to eliminate stop words from a text or text-based object

tokens_remove(x, pattern, ...)

x tokens object whose token elements will be removed

pattern a character vector, list of character vectors

Usually we remove function words (grammatical words) that have little or no substantive meaning
in pre-processing. stopwords() returns a pre-defined list of function words.

Preprocessing with quanteda

The function token_wordstem() applies a stemmer to words. This is a wrapper to wordStem
designed to allow this function to be called without loading the entire SnowballC package.

tokens_wordstem(x, language = quanteda_options("language_stemmer"))

x a tokens object whose word stems are to be removed. If tokenized texts, the
tokenization must be word-based.

language the name of a recognized language

Preprocessing with quanteda

> corpus <- tokens(corpus,
+ remove_punct = TRUE,
+ remove_number = TRUE) |>
+ tokens_remove(pattern = stopwords("en")) |>
+ tokens_wordstem() > corpus

Preprocessing with quanteda

The function dfm() construct a sparse document-feature matrix, from a character, corpus,
tokens, or even other dfm object.

dfm(x,…)

x a tokens or dfm object

Preprocessing with quanteda

Next, we create the dfm, i.e., the document-feature matrix based on the bag of words
representation.

NB with quanteda

Steps to follow:

• We need to split our data in training and test data

• Next we train the model using the training data set - function
quanteda.textmodels::textmodel_nb()

• We match the features (words) in the training model with those in the test set – function
dfm_match()

• We test the performance on the test set – function predict()

• Evaluate performance through proper metrics – package caret

NB with quanteda

We split our data into a training set (to train the model) and a test set (to test the performance of
the model on new labelled data). If the results are satisfying we can eventually use the model on
new unlabelled data.

To select the training set, we use two functions: base::sample() + quanteda::dfm_subset()

base::sample() takes a sample of the specified size from a set of elements

sample(x, size, replace = FALSE, …)

x either a vector of one or more elements from which to choose

size a non-negative integer giving the number of items to choose.

replace should sampling be with replacement?

NB with quanteda

quanteda::dfm_subset() returns document subsets of a dfm that meet certain conditions,
including direct logical operations on docvars (document-level variables)

dfm_subset(x, subset, ...)

x dfm object to be subsetted

subset logical expression indicating the documents to keep: missing values are taken as false

To define the subset argument, we use quanteda::docid() function, which gets (or sets) the
document ids of a corpus, tokens, or dfm object. It returns an internal variable denoting the
original "docname" from which a document came.

docid(x)

x the object with docnames

NB with quanteda

We create two dfms: dfm_training and dfm_test

> set.seed(6272)
> id_train <- sample(1:nrow(reviews), 0.7*nrow(reviews), replace =
FALSE)
> head(id_train, 10)
[1] 5897 9107 8787 1325 3929 7993 2359 7584 3633 10330
> dfm_training <- dfm_subset(dfm, docid(dfm) %in% id_train)
> dfm_test <- dfm_subset(dfm, !docid(dfm) %in% id_train)

NB with quanteda

After splitting the data, we use the function quanteda.textmodels::textmodel_nb(),
which fits a multinomial or Bernoulli Naive Bayes model, given a dfm and some training labels.
It requires to specify the training set, the column with the label and other arguments
including the prior type that we do not discuss.

textmodel_nb(x, y, ….)

x the dfm on which the model will be fit. Does not need to contain only the training
documents.

y vector of training labels associated with each document identified in train.

NB with quanteda

> tmod_nb <- textmodel_nb(dfm_training, dfm_training$sentiment)
> summary(tmod_nb)

NB with quanteda

Next we test the performance on the test data using dfm_match() and predict() functions.

dfm_match() matches the feature set of a dfm to a specified vector of feature names. For
existing features in x for which there is an exact match for an element of features, these will be
included. Any features in x not features will be discarded, and any feature names specified in
features but not found in x will be added with all zero counts.

dfm_match(x, features)

x a dfm
features character; the feature names to be matched in the output dfm

Selecting on another dfm's featnames() is useful when you have trained a model on one dfm,
and need to project this onto a test set whose features must be identical.
quanteda::featnames() gets the features from a dfm, which are stored as the column names
of the dfm object. It returns a character vector of the feature labels

NB with quanteda

quanteda::predict() implements class predictions using trained Naive Bayes examples

predict(object, newdata = NULL, ...)

object a fitted Naive Bayes textmodel

newdata dfm on which prediction should be made

NB with quanteda

NB with quanteda

Finally, we compare the predicted classes with the actual ones. In addition, we can use
the confusionMatrix function from the caret package that returns some performance
metrics.

PRED. / ACT. NEG POS

NEG TN FN

POS FP TP

Tot. N P

•TP: True positive;
•TN: True Negative;
•FP: False Positive;
•FN: False Negative

NB with quanteda

caret::confusionMatrix() calculates a cross-tabulation of observed and predicted

classes with associated statistics

confusionMatrix(data, positive = NULL, prevalence = NULL, mode =

"sens_spec", ...)

data a factor of predicted classes (for the default method) or an object of class table

positive an optional character string for the factor level that corresponds to a "positive"
result (if that makes sense for your data). If there are only two factor levels, the
first level will be used as the "positive" result.

mode a single character string either "sens_spec", "prec_recall", or "everything"

NB with quanteda

We look at:
• Accuracy: rate of correctly classified

documents (TN+TP)/(N+P)
• Sensitivity: true positive rate TP/P
• Specificity: true negative rate TN/N
• Balanced accuracy: is useful when the

dataset is imbalanced
(Sensitivity+Specificity)/2

Moreover, in real applications you should think
about how to deal with unbalanced data and
other techniques such as cross validation.

Exercise for you

We want now to apply the obtained NB classifier to new (unlabeled) data. Consider the
dataset sentiment_lexicon.rds containing the polarity of Boston Airbnb apartments
according to bing, afinn, nrc, and udpipe.

1) Prepare the data using quanteda preprocessing.

2) Apply the NB classifier obtained from the Trip Advisor Hotel reviews (developed in
class).

3) Check how many times all the methods have provided the same results.

4) Using cross tabulations, compare the results obtained with the NB classifier with
those obtained from the other methods. With which of the previous methods the NB
agrees the most?

