Lezione 31 - Funzioni a più variabili: limiti e continuità

Si definisce una funzione reale a n variabili reali una corrispondenza univoca tra X sottoinsieme del prodotto cartesiano R^n e l'insieme dei reali:

$$f: X \subseteq \mathbb{R}^n \to \mathbb{R}$$

ossia ad ogni *n*-upla ordinata di reali appartenente a *X*, detto **dominio**, corrisponde uno e un solo valore appartenente all'insieme dei reali detto **codominio**, si scrive

$$y = f(x_1, x_2, ..., x_n)$$

Caso particolare è quello di *X* **dominio rettangolare** ossia prodotto cartesiano di *n* intervalli di *R* per cui la funzione è:

$$f: X_1 \times X_2 \times ... \times X_n \rightarrow R$$
 $X_i \subseteq R$ $i = 1, 2, 3...$

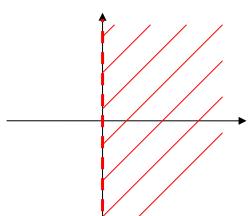
La n-upla ordinata di valori reali è definita come un vettore a n dimensioni, in cui vi sono n variabili indipendenti.

Domanda chiave: Come si determina il dominio di una funzione a più variabili?

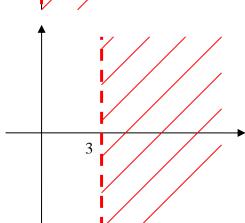
Esempi 31.5

Caso particolare: $X \subseteq R^2$

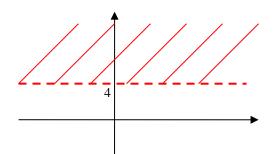
$$f(\underline{x}) = \ln x_1, x_1 > 0$$



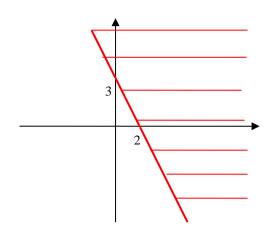
$$f(\underline{x}) = \ln(x_1 - 3), x_1 - 3 > 0, x_1 > 3$$



$$f(\underline{x}) = \frac{1}{\sqrt{x_2 - 4}}, x_2 - 4 > 0, x_2 > 4$$

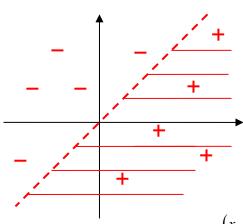


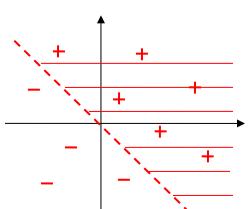
$$f(\underline{x}) = \sqrt{3x_1 + 2x_2 - 6}, 3x_1 + 2x_2 - 6 \ge 0$$

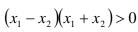


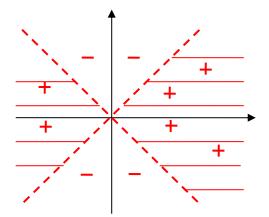
$$f(\underline{x}) = \ln(x_1^2 - x_2^2), x_1^2 - x_2^2 > 0 \Leftrightarrow (x_1 - x_2)(x_1 + x_2) > 0$$

$$x_1 - x_2 > 0$$

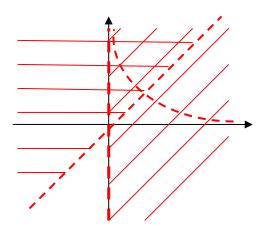






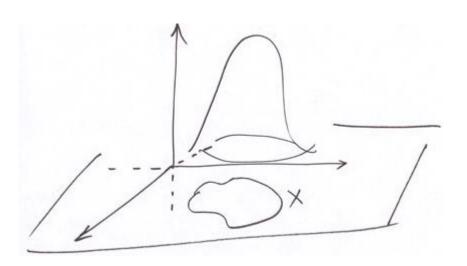


$f(\underline{x}) = \frac{\ln(x_1\sqrt{x_2 - x_1})}{x_1x_2 - 1},$	$\int x_1 \sqrt{x_2 - x_1} > 0$	$\begin{cases} x_1 > 0 \end{cases}$
	$\begin{cases} x_2 - x_1 > 0 & \Leftarrow \end{cases}$	$\Rightarrow \left\{ x_2 - x_1 > 0 \right.$
	$x_1 x_2 - 1 \neq 0$	$\left(x_1 x_2 - 1 \neq 0\right)$



Definizione 31.4

Sia $f: X \to R_{\text{con}} \ X \subseteq R^n$ dominio di f, dicesi **grafico di f** un sottoinsieme del prodotto Sia $f: X \to COII$ cartesiano $R \times R^n = R^{n+1}$ così definito $G = \{(\underline{x}, f(\underline{x})) \in R^{n+1} : \underline{x} \in X\}$



Curve di livello

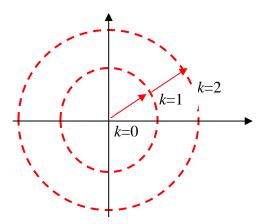
Definizione 31.5 Sia $f: X \to R, X \subseteq R^2$ è detta **curva di livello** relativa al valore k il sottoinsieme di X per cui l'immagine è pari a k ovvero $C = \{x \in X : f(x) = k\}$

Esempio 31.6

Le curve di livello della funzione $f: R^2 \to R$ tale che $f(x_1, x_2) = x_1^2 + x_2^2$ sono le curve di equazione $x_1^2 + x_2^2 = k$ ovvero le circonferenze con centro nell'origine. Per k=0 la curva di livello ha equazione $x_1^2 + x_2^2 = 0$ e si riduce al punto $(x_1, x_2) = (0,0)$.

Per k < 0 la curva di livello ha equazione $x_1^2 + x_2^2 = k < 0$ impossibile.

Per k>0 la curva di livello ha equazione $x_1^2 + x_2^2 = k > 0$ circonferenza con centro nell'origine.

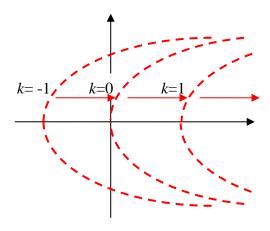


Osservazione

Dalla posizione delle curve di livello relative a valori crescenti/decrescenti di k si possono avere informazioni sui minimi e massimi della funzione. In questo caso si vede che aumentando k le curve di livello si allontanano dall'origine quindi il punto (0,0) è di minimo assoluto.

Esempio 31.7

Le curve di livello della funzione $f: R^2 \to R$ tale che $f(x_1, x_2) = x_1 - x_2^2$ sono le curve di equazione $x_1 - x_2^2 = k \Leftrightarrow x_1 = x_2^2 + k$.



Osservazione

In questo caso si vede che aumentando k le curve di livello si "muovono" da sinistra verso destra per traslazione quindi non esistono né punti di minimo né punti di massimo.

Esempio 31.8

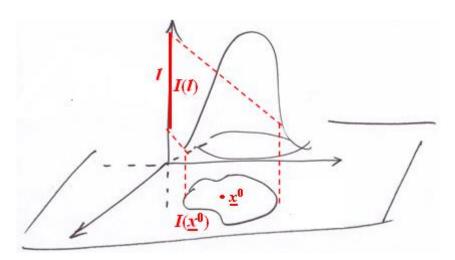
Nell'ambito economico si ritrova il concetto di curve di livello come:

- a. le curve di indifferenza di una funzione di utilità. Per esempio, se $U(x,y) = x^a y^b$, a+b=1 è la funzione di utilità di un consumatore riferita alle quantità x e y di due beni, le curve di indifferenza sono $x^a y^b = k, k \in \mathbb{R}^+$.
- b. gli isoquanti di una funzione di produzione. Per esempio, se la funzione di produzione è $f(x_1, x_2) = a_1 x_1 + a_2 x_2$ lineare. $x_1, x_2 \ge 0$, $a_1, a_2 \ge \hat{0}$, gli isoquanti sono le rette $a_1x_1 + a_2x_2 = k, k \in \mathbb{R}^+$.

Limiti

Data la funzione $f: X \to R \text{ con } X \subseteq R^n \text{ e } \underline{x}^0 \in R^n \text{ si definisceche } l \text{ è limite di } f \text{ per } \underline{x} \text{ tendente a } \underline{x}^0 \text{ e si scrive } \underline{x} \to \underline{x}^0 \text{ se}$

$$\forall I(l) \exists I(\underline{x}^0) : \forall \underline{x} \in I(\underline{x}^0) \cap X; \underline{x} \neq \underline{x}^0 \quad f(\underline{x}) \in I(l)$$



Definizione 31.7

f:
$$X \to R_{\text{con}} X \subseteq R^n_{\text{con}} X \subseteq R^n_{\text{con}} X \subseteq R^n_{\text{si dice continua in } \underline{x}^0} \in X_{\text{se} \lim_{x \to x^0} f(\underline{x}) = f(\underline{x}^0)}$$

Esempio 31.9

$$f(\underline{x}) = \frac{2x_1x_2}{x_1^2 + x_2^2}, \ x_1^2 + x_2^2 \neq 0, \ f: R^2 \setminus \{\underline{0}\} \to R$$

 $\lim_{\underline{x} \to \underline{0}} \frac{2x_1 x_2}{x_1^2 + x_2^2}$ non esiste perché in qualunque intorno di

(0,0) cadono

- infiniti punti la cui immagine è 0,
- infiniti punti la cui immagine è 1; infatti $x_1 = 0, x_2 \neq 0 \Rightarrow f(\underline{x}) = 0 \Rightarrow f(\underline{x}) \rightarrow 0$ $x_2 = 0, x_1 \neq 0 \Rightarrow f(x) = 0 \Rightarrow f(x) \rightarrow 0$ $x_1 = x_2 \neq 0 \Rightarrow f(x) = 1 \Rightarrow f(x) \rightarrow 1$

$$f\left(\underline{x}\right) = \ln\left(1 + x_1^2 + x_2^2\right)$$

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(\underline{x}) \ge 0, f(\underline{x}) = 0 \Leftrightarrow \underline{x} = \underline{0}$$

$$f(\underline{x}) \ge 0, \ f(\underline{x}) = 0 \Leftrightarrow \underline{x} = \underline{0}$$

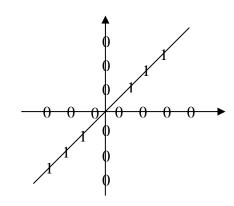
$$\forall I(0) \exists I(\underline{0}) : \forall \underline{x} \in I(\underline{0}); \underline{x} \ne \underline{0} \quad f(\underline{x}) \in I(\underline{0})$$

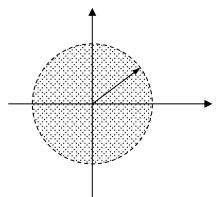
$$-\varepsilon < f(\underline{x}) < \varepsilon \Leftrightarrow \ln(1 + x_1^2 + x_2^2) < \varepsilon$$

$$1 + x_1^2 + x_2^2 < e^{\varepsilon} \Leftrightarrow x_1^2 + x_2^2 < e^{\varepsilon} - 1$$

$$1 + x_1^2 + x_2^2 < e^{\varepsilon} \iff x_1^2 + x_2^2 < e^{\varepsilon} - 1$$

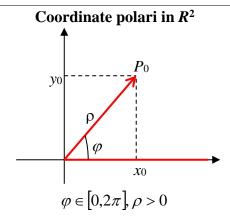
Poiché $f(\underline{0}) = 0$ la funzione è continua per $\underline{x} = \underline{0}$.



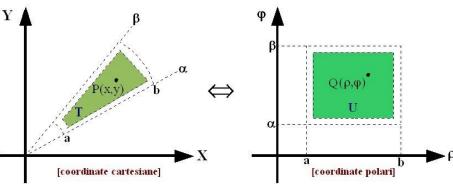


APPROFONDIMENTO

Domanda chiave: Ci sono altri metodi per calcolare il limite di una funzione in più variabili?



Le coordinate polari permettono di rappresentare settori di corone circolari come domini rettangolari.

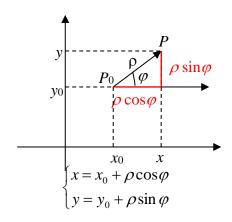


Da coordinate polari a cartesiane

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$$

Da coordinate cartesiane a polari

$$\begin{cases} \rho = \sqrt{x^2 + y^2} \\ \tan \varphi = \frac{y}{x} \end{cases}$$



Esempio 31.11

$$\lim_{n \to \infty} \ln(1 + x_1^2 + x_2^2)$$

Escripio 31.11 $\lim_{x\to 0} \ln(1+x_1^2+x_2^2)$ Calcoliamo il limite dell'esercizio 31.6

Usando le coordinate polari:

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$$

Si verifica che il limite è 0; infatti

$$\lim_{x \to 0} \ln(1 + x_1^2 + x_2^2) = \lim_{\rho \to 0} \ln(1 + \rho^2) = 0$$

Esempio 31.12
$$\lim_{\underline{x} \to \underline{x}^0} \frac{(x_1 - 1)^2 x_2}{(x_1 - 1)^2 + x_2^2} \quad \text{dove} \quad \underline{x}^0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Usando le coordinate polari:

$$\begin{cases} x = 1 + \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$$

$$\begin{aligned} & \underset{\underline{x} \to \underline{x}^{0}}{\operatorname{Sinver}(\operatorname{fica} \frac{1}{2}\operatorname{he^{x}il} | \operatorname{limiteh}_{\rho \to 0^{+}} \frac{0(\operatorname{limfatos} \varphi - 1)^{2}(\rho \sin \varphi)}{(1 + \rho \cos \varphi - 1)^{2} + (\rho \sin \varphi)^{2}} = \\ & = \lim_{\rho \to 0^{+}} \frac{\rho^{3} \cos^{2} \varphi \sin \varphi}{\rho^{2}(\cos^{2} \varphi + \sin \varphi^{2})} = \lim_{\rho \to 0^{+}} \rho \cos^{2} \varphi \sin \varphi = 0 \end{aligned}$$

Sia
$$f: R^2 \rightarrow x \hat{R}$$

$$f(\underline{x}) = \begin{cases} R^2 \rightarrow x \hat{R} \\ \sqrt{x_1^4 + x_2^4} \end{cases} \quad \underline{x} \neq \underline{0}$$

$$1 \quad \underline{x} = \underline{0}$$

Non è continua in
$$\frac{x^0_2 = 0}{x^{-\frac{1}{2}}}$$
; infatti $\frac{\rho^2 \sin^2 \varphi}{\sqrt{\rho^4 \cos^4 \varphi + \rho^4 \sin \varphi^4}} = \lim_{\rho \to 0^+} \frac{\sin^2 \varphi}{\sqrt{\cos^4 \varphi + \sin \varphi^4}}$ dipende da φ (per

esempio se $\varphi = 0$ il limite è 0, se $\varphi = \frac{\pi}{2}$ il limite è 1, quindi il limite non esiste.

