
Text Mining and Sentiment Analysis

Prof. Annamaria Bianchi
A.Y. 2024/2025

Lecture 23

26 May 2025

Introduction to Web Scraping with R

Outline

2

Simple examples

3

Select the name of the main books (R4DS and TidyTextMining)
> html |>
+ html_elements(css = "div.mybook p i") |>
+ html_text2()
[1] "R4DS" "TidyTextMining"

In alternative it is also possible to specify the attribute in this way:

> html |>
+ html_element(css = "[class = 'mybook']") |>
+ html_elements(css = "p i") |>
+ html_text2()
[1] "R4DS" "TidyTextMining"

Simple examples

4

Select the list of the other books:
> html |>
+ html_elements(css = "li") |>
+ html_text2()
[1] "Book1" "Book2" "Book3"

Exercise. Make the same selection using XPath.

html_table() function

5

The function html_table() parses an html table into a data frame

html_table(x, header = NA, …)

x A document (from read_html()), node set (from html_elements()), node
(from html_element()), or session (from session()).

header Use first row as header? If NA, will use first row if it consists of <th> tags. If TRUE, column names are
left exactly as they are in the source document, which may require post-processing to generate a
valid data frame.

When applied to a single element, html_table() returns a single tibble. When applied to multiple elements
or a document, html_table() returns a list of tibbles.

Simple examples

6

Select the table:
> html |>
+ html_element(css = "table") |>
+ html_table()
A tibble: 2 × 3

Book Author Price
<chr> <chr> <chr>

1 Title1 Author1 Price1
2 Title2 Author2 Price2

> html |>
+ html_element(xpath = "//table") |>
+ html_table()

Examples with real data

7

Two main types of webpages:

 Static webpages present the same content every time they are viewed.

 Dynamic webpages create content instantly in response to user input and present customized or updated
information.

Let us start to consider static webpages, using the rvest functions considered so far.

Examples with real data - unibg

8

Let’s scrape and save in a .txt file the history of our University.

First, it is necessary to define the url. Then, we read the url with the read_html() function

> url <- "https://en.unibg.it/about-us/university/history-and-identity"
> html <- read_html(url)

Then, we use the CSS selector gadget in order to find the right element. You can select the elements in
different ways. The result is almost the same. Indeed, there are multiple ways for implementing the same
task.

> text <- html |>
+ html_elements(css = "p , .aprichiudi-titolo, .page-header") |>
+ html_text2()
> text
> write(text, file = "text.txt")

Examples with real data – Wikipedia table

9

Let’s scrape the table with the administrative division for the Lombardia region from Wikipedia:
> url = "https://en.wikipedia.org/wiki/Lombardy"
> html = read_html(url)
> # absolute path
> html |>
+ html_element(xpath =
"/html/body/div[2]/div/div[3]/main/div[3]/div[3]/div[1]/table[5]") |>
+ html_table(header = T)

Examples with real data – Wikipedia table

10

Try also with the relative path:
> # relative path
> html |>
+ html_element(xpath = "//table[5]") |>
+ html_table(header = T)

or with CSS selector…

Scraping multiple web pages

11

In this example, the objective is to identify and store relevant articles’ information from the Journal of
Statistical Software (Title, Abstract, Authors, Date and DOI).

https://www.jstatsoft.org/index

We go to Archives and we select volume 99. There are 15 articles, but for simplicity we only consider the first
5.

If we inspect the first two articles, we can notice that there is a common pattern in the web address: v<volume
number>i<article issue number>. We can exploit this pattern in order to iterate the scraping action over all
(5) articles.
Moreover, we want to save all the web pages because they can be useful for future project. We will see an
example without saving the web-pages and without a “for” cycle in the case study.
Here we use the SelectorGadget. Try with XPath.

https://www.jstatsoft.org/index

Scraping multiple web pages

12

> url_vol <- "https://www.jstatsoft.org/article/view/v099i"
> issue <- str_c("0", seq(1, 5, 1))
> issue
[1] "01" "02" "03" "04" "05"

> url_list <- str_c(url_vol, issue)
> url_list
[1] "https://www.jstatsoft.org/article/view/v099i01"
[2] "https://www.jstatsoft.org/article/view/v099i02"
[3] "https://www.jstatsoft.org/article/view/v099i03"
[4] "https://www.jstatsoft.org/article/view/v099i04"
[5] "https://www.jstatsoft.org/article/view/v099i05"
> names <- str_c("vol99_issue", seq(1, 5, 1), ".html")
> names[1:5]
[1] "vol99_issue1.html" "vol99_issue2.html" "vol99_issue3.html" "vol99_issue4.html"
[5] "vol99_issue5.html"
> folder <- "jstat/"
> dir.create(folder)

>

Scraping multiple web pages

13

> for (i in 1:length(url_list)) {
+ if (!file.exists(str_c(folder, names[i]))) {
+ download.file(url_list[i], destfile = paste0(folder, + names[i]))
+ Sys.sleep(1)
+ }
+ }
> list.files(folder)
[1] "vol99_issue1.html" "vol99_issue2.html" "vol99_issue3.html" "vol99_issue4.html"
[5] "vol99_issue5.html"

>

Scraping multiple web pages

14

> list_files_path <- list.files(folder, full.names = TRUE)

> authors <- character()
> title <- character()
> date <- character()
> abstract <- character()
> doi <- character()

>

Scraping multiple web pages

15

> for (i in 1:length(list_files_path)) {
+ html <- read_html(list_files_path[i], encoding = "UTF8")
+ authors[i] <- html |> + html_element(css = ".authors_long strong") |>
+ html_text2()
+ title[i] <- html |>
+ html_element(css = ".page-header") |>
+ html_text2()
+ date[i] <- html |>
+ html_element(css = ".article-meta :nth-child(2) .col-sm-8") |>
+ html_text2()
+ abstract[i] <- html |>
+ html_element(css = ".article-abstract") |>
+ html_text2()
+ doi[i] <- html |>
+ html_element(css = ".row:nth-child(3) a") |>
+ html_text2()
+ }
> articles <- tibble(authors = authors, title = title, date = date,
+ abstract = abstract, doi = doi)
> View(articles)

>

Scraping dynamic web pages

16

In Dynamic web pages, the content which is displayed changes according to user’s actions even if the source
code remains the same. This is the case of X homepage which is updated automatically when you scroll down
the page. Or, for example, when you select some options from a list and your results are filtered.

We cannot use the same techniques of static web pages because they focus on the scraping of the source
code, which remains the same. It is the content which changes with our actions. Thus, scraping becomes
more difficult or even impossible.

These pages are enriched with AJAX (Asynchronous JavaScript and XML) and Javascript tools which allow to
interact with the page. From the perspective of the user experience this is an advantage, but it makes web
scraping difficult. We do not study AJAX or JavaScript in details.

When you visit such web-pages, the “live” DOM tree changes according to your actions but it is not possible to
access it directly using rvest. We need to use a technology that mimic an online session in order to render all
the dynamic content and then scrape. This is Selenium.

Selenium is a Java-based software and can be used in R through the Rselenium package. In that way, we
have a remote-control through R of Selenium which communicates with the web and can gather the live
HTML DOM tree in any moment.

You also need to install Java https://www.java.com/en/download/

>

Scraping dynamic web pages – German parliament

17

The objective is to scrape all the names of elected politicians. In order to get the list, we need to click on the
“list” button (upper right in the page). This is a Dynamic Web Page and to do that, we use RSelenium.

> library(RSelenium)
> library(netstat)

> rD <- rsDriver(browser = "firefox",
+ verbose = FALSE,
+ port = free_port(),
+ chromever = NULL)

> remDr <- rD[["client"]]

> url <- "https://www.bundestag.de/abgeordnete/"
> remDr$navigate(url)

>

Scraping dynamic web pages – German parliament

18

We need to identify and click the list button through R.

> # identify and click the list button
> button <- remDr$findElement(using = "css", value = ".icon-list-bullet")
> button$clickElement()

> # save the live DOM tree
> output <- remDr$getPageSource(header = TRUE)
> write(output[[1]], file = "parliament.html")

> # close the connection
> remDr$close()
> rD$server$stop()
[1] TRUE

>

Scraping dynamic web pages – German parliament

19

Then, we can find and visualize the results

> parliament |>
+ html_elements(".bt-list-holder > li:nth-child(1) > a:nth-child(1) > div:nth-
child(1) > div:nth-child(1) > h3:nth-child(1)") |>
+ html_text2()
[1] "\r Abdi, Sanae\r"

> parliament |>
+ html_elements("ul.bt-list-holder li h3") |>
+ html_text2()
[1] "\r Abdi, Sanae\r"
[2] "\r Abraham, Knut\r"
[3] "\r Achelwilm, Doris\r«
….

Of course, you should clean and re-arrange the text.

>

Scraping dynamic web pages – Pew Research Statistics

20

The objective is to scrape the table which show what percentage of the Total U.S. adult population (and by
party) gets news about the coronavirus outbreak on social media.

https://www.pewresearch.org/pathways-2020/covidthreat_a/political_party/democrat_lean_dem/

This can be done in different ways. Here we search for the survey question “Getting COVID-19 news on social
media” in the “1. Search for a survey question” query field.

>

Scraping dynamic web pages – Pew Research Statistics

21

> # set up connection and start browser to navigate the page
> rD <- rsDriver(browser = "firefox",
+ verbose = FALSE,
+ port = free_port(),
+ chromever = NULL)
> remDr <- rD[["client"]]

> url <- "https://www.pewresearch.org/pathways-
2020/covidthreat_a/political_party/democrat_lean_dem/"
> remDr$navigate(url)

>

Scraping dynamic web pages – Pew Research Statistics

22

> # identify and clear search field
> field <- remDr$findElement(using = "css", ".prompt")
> field$clearElement()
> search = "Getting COVID-19 news on social media"
> field$sendKeysToElement(list(search))
> # click on the new tab in order to search
> click <- remDr$findElement(using = "css", ".result")
> click$clickElement()

> # identify the list of political party
> css <- "div.flex-direction-column:nth-child(1) > div:nth-child(2) > div:nth-
child(1) > i:nth-child(2)"
> list <- remDr$findElement(using = "css", value = css)
> list$clickElement()

> # and select u.s. adults
> css <- "div.visible:nth-child(3) > div:nth-child(1) > a:nth-child(1)"
> elem <- remDr$findElement(using = "css", value = css)
> elem$clickElement()

>

Scraping dynamic web pages – Pew Research Statistics

23

> # select the table output
> css <- "a.active:nth-child(2)"
> elem <- remDr$findElement(using = "css", value = "table")
> elem$clickElement()

> # save the output
> output <- remDr$getPageSource(header = TRUE)
> write(output[[1]], file = "covid_news.html")
> # close the connection
> remDr$close()
> rD$server$stop()
[1] TRUE

>

Scraping dynamic web pages – second example

24

Then, we can parse and clean the data:

> covid_news <- read_html("covid_news.html", encoding = "utf-8")
> covid_news |>
+ html_elements("table") |>
+ html_table()

>

