
Text Mining and Sentiment Analysis

Prof. Annamaria Bianchi
A.Y. 2024/2025

Lecture 23

27 May 2025



Case study

Outline

2



Construct a function for scraping Amazon reviews

3

Objective: scrape the reviews about a specific product: the book The Theory That Would Not Die

https://www.amazon.co.uk/product-reviews/B0050QB3EQ/

We are interested in all reviews but, then, we will analyse only english-written ones. 

Reviews are organized on multiple pages and in this example we can find both “Reviews from UK” and from 
“Other countries”. The page is dynamic. So we will use RSelenium.

Notice also that, if you look at only at the first page, you will see Reviews from UK only. However, when you try
to scrape multiple pages, the function returns an error. This is because the characteristics of the element in 
the html file are different. 

We need first to obtain the webpages using Rselenium and then scrape the pages to obtain the review title, 
text and stars.

https://www.amazon.co.uk/product-reviews/B0050QB3EQ/


Construct a function for scraping Amazon reviews

4

Obtain the webpages using Rselenium

> rD <- rsDriver(browser = "firefox", 
+ verbose = FALSE, 
+ port = free_port(), 
+ chromever = NULL) 
> remDr <- rD[["client"]] 

> url <- "https://www.amazon.co.uk/product-reviews/B0050QB3EQ/" 
> remDr$navigate(url) 



Construct a function for scraping Amazon reviews

5

> # identify email field 
> field <- remDr$findElement(using = "css", "#ap_email") 
> email = "YOUR EMAIL" 
> field$sendKeysToElement(list(email)) 

> # click on the tab 
> click <- remDr$findElement(using = "css", "#continue") 
> click$clickElement() 

> # identify pwd field 
> field <- remDr$findElement(using = "css", "#ap_password") 
> pwd = "YOUR PASSWORD" 
> field$sendKeysToElement(list(pwd)) 

> # click on the tab 
> click <- remDr$findElement(using = "css", "#signInSubmit") 
> click$clickElement()



Construct a function for scraping Amazon reviews

6

Next we create a folder in our directory (Amazon) and save the first page Amazon1.html. We click the Next 
button and save the other pages using a for loop.

> folder <- "Amazon/" 
> dir.create(folder)

> names <- str_c("Amazon", seq(1, 10, 1), ".html") 
> names 
[1] "Amazon1.html" "Amazon2.html" "Amazon3.html" "Amazon4.html" 
[5] "Amazon5.html" "Amazon6.html" "Amazon7.html" "Amazon8.html" 
[9] "Amazon9.html" "Amazon10.html" 

> output <- remDr$getPageSource(header = TRUE) 
> write(output[[1]], file = str_c(folder, 
+ names[1]))



Construct a function for scraping Amazon reviews

7

> for (i in 2:length(names)) { 
+ if (!file.exists(str_c(folder, names[i]))) { 
+ # identify and click the next button
+ button <- remDr$findElement(using = "css", value = ".a-last") 
+ button$clickElement() 
+ Sys.sleep(3) 
+ output <- remDr$getPageSource(header = TRUE) 
+ write(output[[1]], file = str_c(folder, + names[i])) 
+ Sys.sleep(5) 
+ } 
+ } 

> # close the connection 
> remDr$close() 
> rD$server$stop() [1] TRUE



Construct a function for scraping Amazon reviews

8

Next, we construct a scraping function. The function will take in input the product id and the page and it will
return a tibble with the review title, text and stars.
After parsing the html pages, the function extracts the information required. In real applications, CSS 
selectors may be not available or difficult to use. In that case we directly identify the class we want. You can 
try other options: there is not an unique way to scrape!



Construct a function for scraping Amazon reviews

9



Construct a function for scraping Amazon reviews

10

Let’s try our function! We use the map_df function from the purrr package in order to iterate the task over multiple 

pages.

> id="B0050QB3EQ" 
> page=1:10 
> library(purrr) 

> data=map_df(page,~amazon_reviews(id, page = .)) 

> View(data)

We also add a doc_id and we save the results

> data = data |> 
+ mutate(id = seq_along(text)) 

> save("data", file = "data.rds")

.



Data cleaning and preprocessing – detect language

11

When working with real data, additional data cleaning steps are necessary. As discussed before, we scraped

reviews from UK but also from other countries. Thus, some of them can be in an other language. Here, we want to 

analyze only reviews written in english, but in other applications we may consider the possibility of translating the 

text or direclty analysing also the review in other languages (with different dictionaries). There are several options 
in order to detect the language. Here, we use the package cld2. This package is built on the Google’s Compact 

Language Detector (in C++). It implements a Naive Bayes clissifier based on n-gram profiles. It is trained on HTML 

pages, so you can use it in order to find the language of webpages but it also with texts (as in our case). If the 
language cannot be determined it returns NA.

Let’s apply the detect_language function to the title and to the text respectively.



Data cleaning and preprocessing – detect language

12

> library(cld2) 
> data$title_lang=detect_language(data$title) 
> data$text_lang=detect_language(data$text) 
> table(Text=data$text_lang,Title=data$title_lang,useNA="always")

> data=data |> 
+ filter (text_lang=="en")



Data cleaning and preprocessing – score

13

The second step is to extract a numeric score form the stars string.

> # Extract the star 
> data = data |> 
+ mutate(score=as.numeric(str_sub(star,1,1))) 

> # analyse the score 
> data |> 
+ summarise(mean(score), min(score), median(score), max(score))

> data |> 
count(score) |> 
+ mutate(p=round(n/sum(n),2))


