

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

22059 – APPLIED TOPICS IN MANAGEMENT ENGINEERING

Excel, Access and Matlab

Prof. Giuseppe Pellegrini Prof. Renato Redondi

AGENDA

Lecture XII

- IMPORTING DATA
 - How to import data from an Excel File
- CONDITIONAL INSTRUCTIONS
 - IF CONSTRUCT
- MATLAB ITERATIVE STRUCTURES
 - FOR
 - WHILE
 - Example 1
 - Example 2

- CHART
 - How to make a chart
 - Example
 - How to save a chart
- MONTE CARLO SIMULATION
 - How to implement in MATLAB
- EXPORTING DATA
 - How to export data into an Excel file
 - Example

- Importing data is quite easy.
- You may import data from:
 - Excel spreadsheet
 - Text file
 - XML file
 - and so on

di Ingegneria Gestionale. dell'Informazione e della Produzione

How to import data from an Excel file

1. In the Variable Group, click on "Import Data".

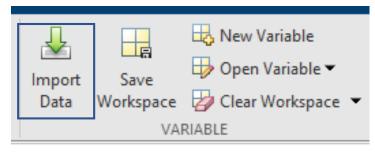


Fig.1: Import Data from VARIABLE group

- 2. The *Import Data* window will appear.
- 3. Select the Excel file to import and click Open.

Dipartimento di Ingegneria Gestionale. dell'Informazione e della Produzione

How to import data from an Excel file

4. The *Import* window will appear.

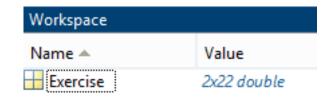
5. You can select the range of data that you want to import:

								Exerc	ise							
Year	VarName2	VarName3	VarName4	VarName5	VarName6	VarName7	VarName8	VarName9	VarName10	VarName11	VarName12	VarName13	VarName14	VarName15	VarName16	VarName17
Text	▼Number ▼	Number 🔹	Number 🔹	Number 🚽	Number 🔹	Number 🔹	Number 🔹	Number 🛛 🔻	Number 🔹	Number 🛛 🔻	Number 🔹 N					
1 Year	0	1	2	2 3	4	5	6	7	8	9	10	11	12	13	14	15
2 Installment	-750000	200000	182000	165620	1.5071e+05	1.3715e+05	1.2481e+05	1.1357e+05	1.0335e+05	9.4051e+04	8.5586e+04	7.7883e+04	7.0874e+04	6.4495e+04	5.8691e+04	5.3408e+04

Fig.2: Data selection

- 5. In the Imported data group, choose the Output Type.
- 6. Then, click on "Import Selection" in the Import group:

Fig.3: Import Selection



Exercise.xlsx 🛛 🛛

How to import data from an Excel file

7. The imported data will be shown in the Workspace as a matrix.

Fig.4:Workspace

8. In the Command Window, write the name of the matrix.

9. Then, Enter.

Exercise =

1.0e+05 * Columns 1 through 12 NaN 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0 NaN -7.5000 2.0000 1.8200 1.6562 1.5071 1.3715 1.2481 1.1357 1.0335 0.9405 0.8559 Columns 13 through 22 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0002 0.7788 0.7087 0.6450 0.5869 0.5341 0.4860 0.4423 0.4025 0.3662 0.3333

Fig.5:Imported data in the Command Window

CONDITIONAL INSTRUCTIONS

IF CONSTRUCT

Simple Selection


```
if espressione
    blocco_istruzioni
end
```

Block instructions are only executed if the expression is true

Example

```
x = input('Inserisci x: ');
y = input('Inserisci y: ');
if x > y
    disp('x è più grande di y');
end
```


CONDITIONAL INSTRUCTIONS

IF CONSTRUCT

Two-way Selection

```
if espressione
    blocco_istruzioni_1
else
    blocco_istruzioni_2
end
```

Block 1 instructions are only executed if the expression is true, otherwise block 2 instructions are executed.

Example

```
x = input('Inserisci x: ');
if x > 0
    disp('Hai inserito un valore positivo');
else
    disp('Hai inserito un valore negativo');
end
```


CONDITIONAL INSTRUCTIONS

IF CONSTRUCT

Two-way Selection

```
if espressione
    blocco_istruzioni_1
else
    blocco_istruzioni_2
end
```

Block 1 instructions are only executed if the expression is true, otherwise block 2 instructions are executed.

Example

```
x = input('Inserisci x: ');
if x > 0
    disp('Hai inserito un valore positivo');
else
    disp('Hai inserito un valore negativo');
end
```

NB. There are also cascading selections and if nested

- If a section of code can potentially be repeated, it could be defined as a loop.
- In MATLAB, two there are two different types of loop:
 - FOR
 - WHILE

Dipartimento
 di Ingegneria Gestionale,
 dell'Informazione e della Produzione

FOR

- The for loop is used when the number of repetitions, namely iterations, is known a priori.
- It can also be used for handling arrays and matrices.

Syntax

```
for variabile = valori_array
    blocco_istruzioni
end
```


di Ingegneria Gestionale. di Ingegneria Gestionale. dell'Informazione e della Produzione

WHILE

• The while loop is used when the number of iterations is not known a priori.

Syntax

```
while condizione
    blocco_istruzioni
end
```


Dipartimento di Ingegneria Gestionale. dell'Informazione e della Produzione

Example 1

Calculate the NPV of a string of 20 cash flows, when r=10%.

• First of all, you have to import data with Numeric Matrix Output Type from the Excel file named "Exercise".

5	Exercise.xlsx 🗶																
	А	В	С	D	E	F	G	Н	I	J	К	L	М	N	0	Р	Q
									Exerc	ise							
	Year	VarName2	VarName3	VarName4	VarName5	VarName6	VarName7	VarName8	VarName9	VarName10	VarName11	VarName12	VarName13	VarName14	VarName15	VarName16	VarName17
Т	Text 🔻	Number 🔹 🔻	Number 🔹 🔻	Number 🔹 🔻	Number 🔹 🔻	Number 🔹 🔻	Number 🔹 🔻	Number 🔹	Number 🔹	Number 🔹 🔻	Number 🔹	Number 🔹 🔻	Number 🔹 🔻	Number 🔹	Number 🔹	Number 🔹 🔻	Number 🔹
1	Year	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	Installment	-750000	200000	182000	165620	1.5071e+05	1.3715e+05	1.2481e+05	1.1357e+05	1.0335e+05	9.4051e+04	8.5586e+04	7.7883e+04	7.0874e+04	6.4495e+04	5.8691e+04	5.3408e+04

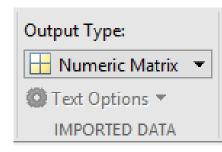


Fig.7: Cash flows and Output Type

Example 1

Calculate the NPV of a string of 20 cash flows, when r=10%.

• Then, you have to define a Function that calculates the NPV:

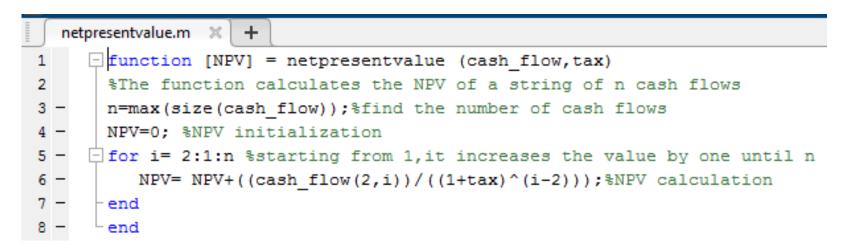


Fig.6: netpresentvalue function

Example 1

Calculate the NPV of a string of 20 cash flows, when r=10%.

• Finally, you have to call the function netpresentvalue by entering the correct input, namely the matrix with cash flows and the rate.

>> Result=netpresentvalue(Exercise,r)

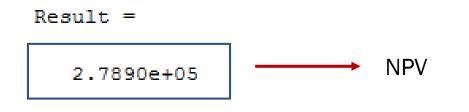


Fig.8: NPV calculation

Example 2

Calculate the Cumulated Discounted Cash Flows and find the payback period.

• First of all, you have to edit the netpresentvalue function:

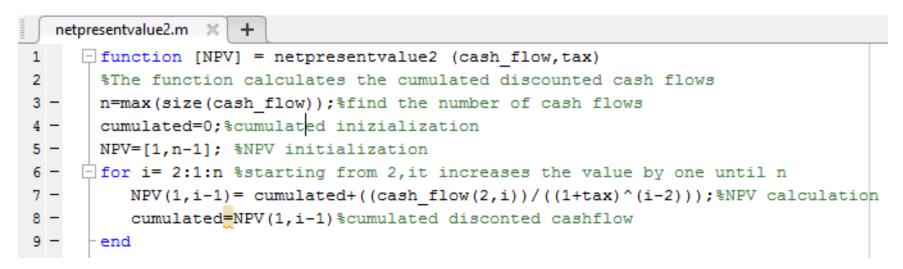


Fig.9: netpresentvalue2 function

Example 2

Calculate the Cumulated Discounted Cash Flows and find the payback period.

- Then, you have to import data with Numeric Matrix Output Type from the Excel file named "Exercise" (for more details, see Example 1).
- Finally, you have to call the function netpresentvalue2 by entering the correct input.

>> Result2=netpresentvalue2(Exercise,r)

Fig.10: Call the function

Example 2

Calculate the Cumulated Discounted Cash Flows and find the payback period.

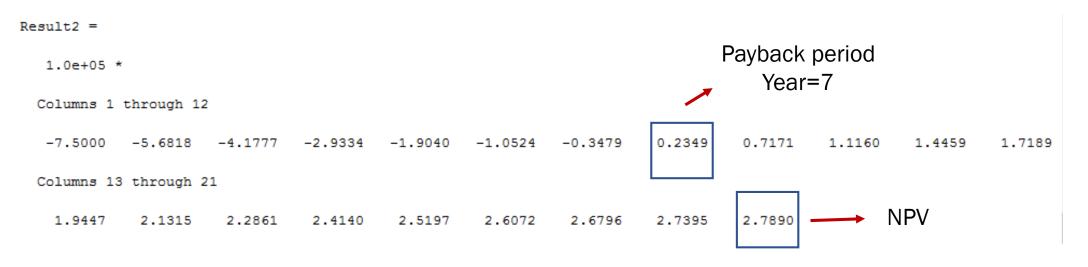


Fig.11: CDCFs

Dipartimento di Ingegneria Gestionale. dell'Informazione e della Produzione

CHARTS

• Creating a chart is quick and easy.

- MATLAB provides various functions in order to graphically represent in 2D or even 3D a set of data on a Cartesian plane.
- You may carry out:
 - x,y diagrams
 - Histograms
- Showing data in a chart can help you evaluate your data and make comparisons between different values.

di Ingegneria Gestionale. dell'Informazione e della Produzione

CHARTS

How to make a chart

- To make a chart you can use:
- plot(x,y)

MATLAB generates a chart based on the x array for the X axis and the y array for the Y axis.

NB. Arrays must be the same length

• plot(x)

MATLAB generates a linear graph based on the x-array for both the X-axis and the Y-axis.

CHARTS - How to make a chart

Example

- >> n=max(size(Exercise));
- >> x=Exercise(1,2:n);
- >> plot(Result2',x)

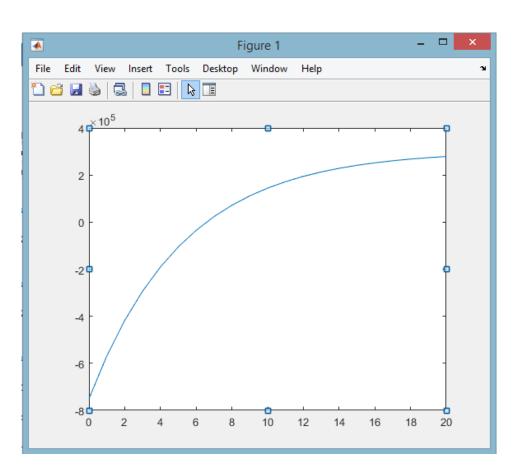


Fig.12: CDCFs chart

Dipartimento di Ingegneria Gestionale. dell'Informazione e della Produzione

CHARTS - How to make a chart

Example

- Moreover, you can change the • properties of the chart:
 - Title •
 - Aces labels
 - Font
 - Legend
 - Colors •

And so on

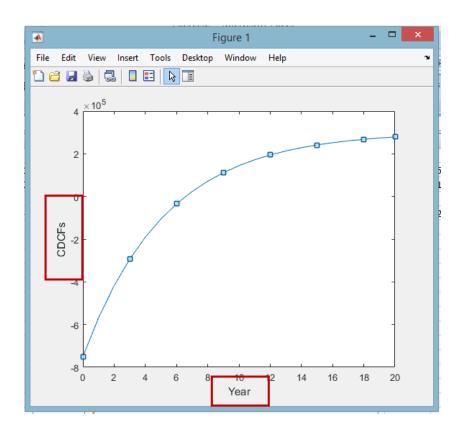
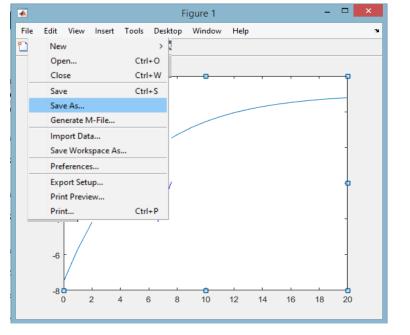
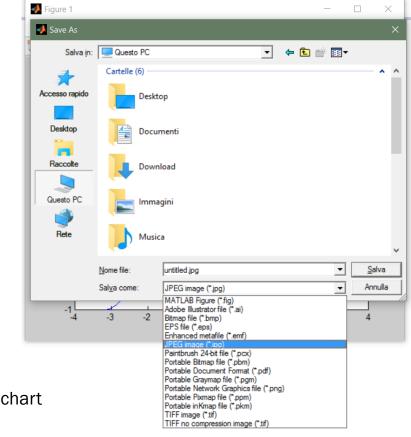


Fig.13: Modified chart


Dipartimento di Ingegneria Gestionale. dell'Informazione e della Produzione

CHARTS


How to save a chart

- 1. Click on File.
- 2. Then, Save as.
- 3. Choose the Format.
- 4. Finally Save.

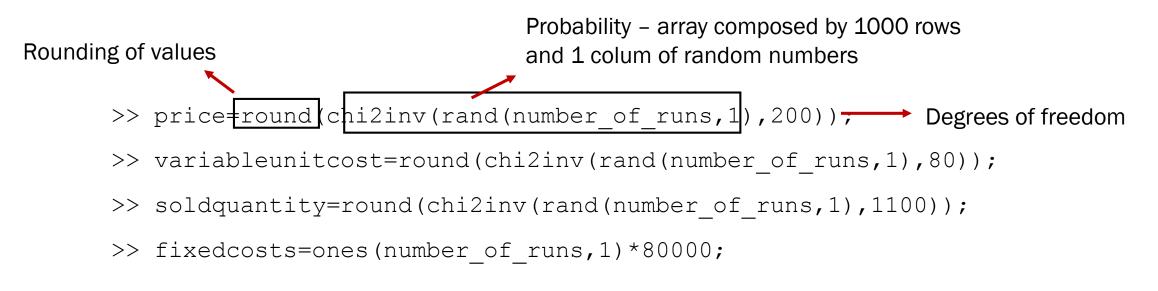
Fig.10: How to save a chart

MONTE CARLO SIMULATION

How to implement in MATLAB

Assessing a company's performance in terms of expected profit

1. First of all, you have to define the number of iterations.


>> number_of_runs=1000;

- 2. Second, you have to define the variables used to calculate the profit:
 - Price
 - Sold quantity
 - Variable unit cost
 - Fixed costs
 - Turnover

Assessing a company's performance in terms of expected profit

- All the variables can only assume positive values.
 - For this reason, the chisquare probability distribution has been chosen to run the simulation.

>> turnover= price.*soldquantity

Assessing a company's performance in terms of expected profit

3. Third, you have to calulate the expected total profit.

>> profit= turnover - (variableunitcost.*soldquantity) - fixedcost

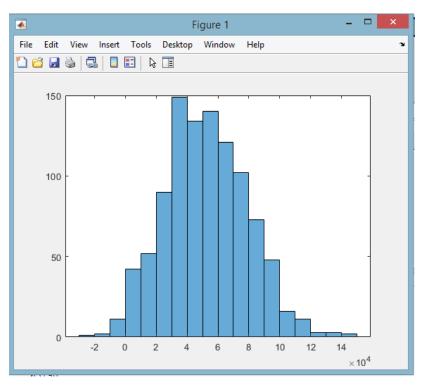

		Command Window
Workspace		profit =
Name 🔺	Value	93758
🕂 fixedcosts	1000x1 double	17410
number_of_runs	1000	100942
price	1000x1 double	73178
profit	1000x1 double	42833
soldquantity	1000x1 double	72450
turnover	1000x1 double	45750
🕂 variableunitcost	1000x1 double	87601
		47160
		6000

Fig.11: Variables and Profit values

Assessing a company's performance in terms of expected profit

4. Moreover, you can generate an histogram of the distribution of the expected profit.

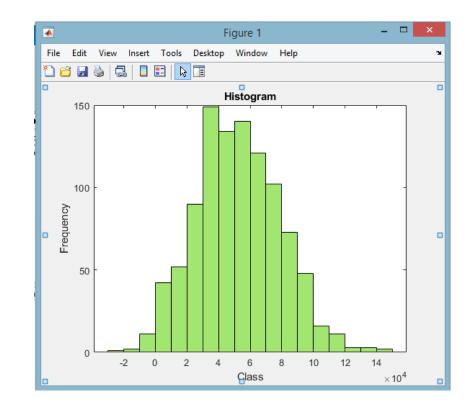
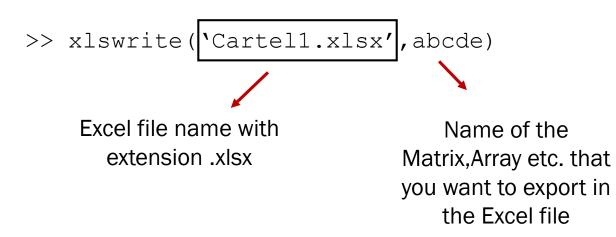


Fig.12: Histogram before and after changes

Assessing a company's performance in terms of expected profit

5. Finally, you can calculate descriptive statistics:

>> mean(profit)	>> min(profit)	>> max(profit)
ans =	ans =	ans =
5.2242e+04	-25198	149446
>> median(profit)	>> std(profit)	>> sum(profit)
ans =	ans =	ans =
51293	2.6451e+04	52241572


Fig.13: Some descriptive statistics

EXPORTING DATA

How to export data into an Excel file

1. You have to use the following function:

di Ingegneria Gestionale. dell'Informazione e della Produzione

EXPORTING DATA - How to export data into an Excel file

Example

Exporting Monte Carlo Simulation data

- First, you have to insert into a single matrix all the variables already defined.
- To do so, write in the Command Window:

>> companyassessment=[price,variableunitcost,soldquantity, fixedcosts,turnover,profit]

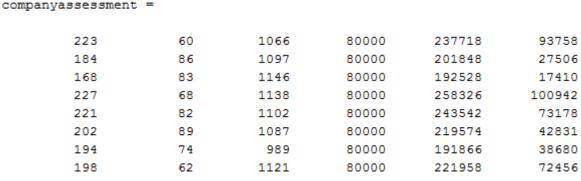
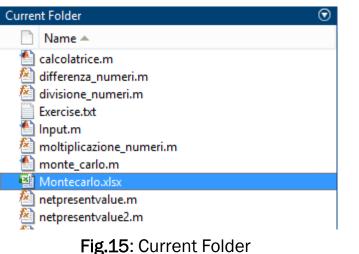


Fig.14: Company assessment matrix

EXPORTING DATA - How to export data into an Excel file

Example


Exporting Monte Carlo Simulation data

Then, use the xlswrite function: •

dell'Informazione e della Produzione

>> xlswrite('Montecarlo.xlsx', companyassessment)

After a short period of time, in the Current Folder, the Montecarlo.xlsx • file will appear.

UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale. **DI BERGAMO**

EXPORTING DATA - How to export data into an Excel file

Example

• Now, if you open the Montecarlo file, you will find the 'companyassessment matrix'.

	А	В	С	D	E	F						
1	price	variableunitcost	soldquantity	fixedcosts	turnover	profit						
2	223	60	1066	80000	237718	93758						
3	184	86	1097	80000	201848	27506						
4	168	83	1146	80000	192528	17410						
5	227	68	1138	80000	258326	100942						
6	221	82	1102	80000	243542	73178						
7	202	89	1087	80000	219574	42831						
8	194	74	989	80000	191866	38680						
9	198	62	1121	80000	221958	72456						
10	205	80	1006	80000	206230	45750						
11	208	47	1041	80000	216528	87601						
12	194	84	1156	80000	224264	47160						
13	203	75	1112	80000	225736	62336						
14	206	71	1103	80000	227218	68905						

Fig.17: Final Montecarlo Excel file

	А	В	С	D	E	F
1	223	60	1066	80000	237718	93758
2	184	86	1097	80000	201848	27506
3	168	83	1146	80000	192528	17410
4	227	68	1138	80000	258326	100942
5	221	82	1102	80000	243542	73178
6	202	89	1087	80000	219574	42831
7	194	74	989	80000	191866	38680
8	198	62	1121	80000	221958	72456
9	205	80	1006	80000	206230	45750
10	208	47	1041	80000	216528	87601
11	194	84	1156	80000	224264	47160
12	203	75	1112	80000	225736	62336
13	206	71	1103	80000	227218	68905
14	196	63	1102	80000	215992	66566

Fig.16: Montecarlo Excel file

• You can edit the spreadsheet to make it more readable.

MATLAB

FURTHER MATERIAL

To review and deepen the topics of this lecture

- 1. MATLAB online help.
- 2. https://www.youtube.com/watch?v=B2EnxvW6wVs
- 3. <u>https://www.youtube.com/watch?v=cyxFsSJSxwE</u>
- 4. <u>https://www.youtube.com/watch?v=1WcHz_JqnJ8</u>

Oipartimento
 di Ingegneria Gestionale.
 dell'Informazione e della Produzione